arclength {pracma} | R Documentation |
Arc Length of a Curve
Description
Calculates the arc length of a parametrized curve.
Usage
arclength(f, a, b, nmax = 20, tol = 1e-05, ...)
Arguments
f |
parametrization of a curve in n-dim. space. |
a , b |
begin and end of the parameter interval. |
nmax |
maximal number of iterations. |
tol |
relative tolerance requested. |
... |
additional arguments to be passed to the function. |
Details
Calculates the arc length of a parametrized curve in R^n
. It applies
Richardson's extrapolation by refining polygon approximations to the curve.
The parametrization of the curve must be vectorized:
if t-->F(t)
is the parametrization, F(c(t1,t1,...))
must
return c(F(t1),F(t2),...)
.
Can be directly applied to determine the arc length of a one-dimensional
function f:R-->R
by defining F
(if f
is vectorized)
as F:t-->c(t,f(t))
.
Value
Returns a list with components length
the calculated arc length,
niter
the number of iterations, and rel.err
the relative
error generated from the extrapolation.
Note
If by chance certain equidistant points of the curve lie on a straight line,
the result may be wrong, then use polylength
below.
Author(s)
HwB <hwborchers@googlemail.com>
See Also
Examples
## Example: parametrized 3D-curve with t in 0..3*pi
f <- function(t) c(sin(2*t), cos(t), t)
arclength(f, 0, 3*pi)
# $length: 17.22203 # true length 17.222032...
## Example: length of the sine curve
f <- function(t) c(t, sin(t))
arclength(f, 0, pi) # true length 3.82019...
## Example: Length of an ellipse with axes a = 1 and b = 0.5
# parametrization x = a*cos(t), y = b*sin(t)
a <- 1.0; b <- 0.5
f <- function(t) c(a*cos(t), b*sin(t))
L <- arclength(f, 0, 2*pi, tol = 1e-10) #=> 4.84422411027
# compare with elliptic integral of the second kind
e <- sqrt(1 - b^2/a^2) # ellipticity
L <- 4 * a * ellipke(e^2)$e #=> 4.84422411027
## Not run:
## Example: oscillating 1-dimensional function (from 0 to 5)
f <- function(x) x * cos(0.1*exp(x)) * sin(0.1*pi*exp(x))
F <- function(t) c(t, f(t))
L <- arclength(F, 0, 5, tol = 1e-12, nmax = 25)
print(L$length, digits = 16)
# [1] 82.81020372882217 # true length 82.810203728822172...
# Split this computation in 10 steps (run time drops from 2 to 0.2 secs)
L <- 0
for (i in 1:10)
L <- L + arclength(F, (i-1)*0.5, i*0.5, tol = 1e-10)$length
print(L, digits = 16)
# [1] 82.81020372882216
# Alternative calculation of arc length
f1 <- function(x) sqrt(1 + complexstep(f, x)^2)
L1 <- quadgk(f1, 0, 5, tol = 1e-14)
print(L1, digits = 16)
# [1] 82.81020372882216
## End(Not run)
## Not run:
#-- --------------------------------------------------------------------
# Arc-length parametrization of Fermat's spiral
#-- --------------------------------------------------------------------
# Fermat's spiral: r = a * sqrt(t)
f <- function(t) 0.25 * sqrt(t) * c(cos(t), sin(t))
t1 <- 0; t2 <- 6*pi
a <- 0; b <- arclength(f, t1, t2)$length
fParam <- function(w) {
fct <- function(u) arclength(f, a, u)$length - w
urt <- uniroot(fct, c(a, 6*pi))
urt$root
}
ts <- linspace(0, 6*pi, 250)
plot(matrix(f(ts), ncol=2), type='l', col="blue",
asp=1, xlab="", ylab = "",
main = "Fermat's Spiral", sub="20 subparts of equal length")
for (i in seq(0.05, 0.95, by=0.05)) {
v <- fParam(i*b); fv <- f(v)
points(fv[1], f(v)[2], col="darkred", pch=20)
}
## End(Not run)