pqrBayes {pqrBayes} | R Documentation |
fit a regularized Bayesian quantile varying coefficient model
Description
fit a regularized Bayesian quantile varying coefficient model
Usage
pqrBayes(
g,
y,
u,
e = NULL,
quant = 0.5,
iterations = 10000,
kn = 2,
degree = 2,
sparse = TRUE,
hyper = NULL,
debugging = FALSE
)
Arguments
g |
the matrix of predictors (subject to selection) without intercept. |
y |
the response variable. The current version only supports the continuous response. |
u |
a vector of effect modifying variable of the quantile varying coefficient model. |
e |
a matrix of clinical covariates not subject to selection. |
quant |
the quantile level specified by users. The default value is 0.5. |
iterations |
the number of MCMC iterations. |
kn |
the number of interior knots for B-spline. |
degree |
the degree of B-spline basis. |
sparse |
logical flag. If TRUE, spike-and-slab priors will be used to shrink coefficients of irrelevant covariates to zero exactly. |
hyper |
a named list of hyperparameters. |
debugging |
logical flag. If TRUE, progress will be output to the console and extra information will be returned. |
Details
The model described in "data
" is:
where 's are the regression coefficients for the clinical covariates and
's are the varying coefficients for the intercept and predictors (e.g. genetic factors).
When sparse=TRUE (default), spike–and–slab priors are adopted. Otherwise, Laplacian shrinkage will be used. Users can modify the hyper-parameters by providing a named list of hyper-parameters via the argument ‘hyper’. The list can have the following named components
a0, b0: shape parameters of the Beta priors (
) on
.
c1, c2: the shape parameter and the rate parameter of the Gamma prior on
.
Please check the references for more details about the prior distributions.
Value
an object of class "pqrBayes" is returned, which is a list with components:
posterior |
posterior samples from the MCMC |
coefficients |
a list of posterior estimates of coefficients |
References
Zhou, F., Ren, J., Ma, S. and Wu, C. (2023). The Bayesian regularized quantile varying coefficient model. Computational Statistics & Data Analysis, 107808 doi:10.1016/j.csda.2023.107808
Ren, J., Zhou, F., Li, X., Ma, S., Jiang, Y. and Wu, C. (2023). Robust Bayesian variable selection for gene-environment interactions. Biometrics, 79(2), 684-694 doi:10.1111/biom.13670
Ren, J., Zhou, F., Li, X., Chen, Q., Zhang, H., Ma, S., Jiang, Y. and Wu, C. (2020) Semi-parametric Bayesian variable selection for gene-environment interactions. Statistics in Medicine, 39: 617– 638 doi:10.1002/sim.8434
Examples
data(data)
g=data$g
y=data$y
u=data$u
e=data$e
## default method
fit1=pqrBayes(g,y,u,e,quant=0.5)
fit1
## non-sparse
sparse=FALSE
fit2=pqrBayes(g,y,u,e,quant=0.5,sparse = sparse)
fit2