| pqrBayes {pqrBayes} | R Documentation |
fit a regularized Bayesian quantile varying coefficient model
Description
fit a regularized Bayesian quantile varying coefficient model
Usage
pqrBayes(
g,
y,
u,
e = NULL,
quant = 0.5,
iterations = 10000,
kn = 2,
degree = 2,
sparse = TRUE,
hyper = NULL,
debugging = FALSE
)
Arguments
g |
the matrix of predictors (subject to selection) without intercept. |
y |
the response variable. The current version only supports the continuous response. |
u |
a vector of effect modifying variable of the quantile varying coefficient model. |
e |
a matrix of clinical covariates not subject to selection. |
quant |
the quantile level specified by users. The default value is 0.5. |
iterations |
the number of MCMC iterations. |
kn |
the number of interior knots for B-spline. |
degree |
the degree of B-spline basis. |
sparse |
logical flag. If TRUE, spike-and-slab priors will be used to shrink coefficients of irrelevant covariates to zero exactly. |
hyper |
a named list of hyperparameters. |
debugging |
logical flag. If TRUE, progress will be output to the console and extra information will be returned. |
Details
The model described in "data" is:
Y_{i}=\sum_{k=1}^{q} E_{ik} \beta_k +\sum_{j=0}^{p}\gamma_j(V_i)X_{ij} +\epsilon_{i},
where \beta_k's are the regression coefficients for the clinical covariates and \gamma_j's are the varying coefficients for the intercept and predictors (e.g. genetic factors).
When sparse=TRUE (default), spike–and–slab priors are adopted. Otherwise, Laplacian shrinkage will be used. Users can modify the hyper-parameters by providing a named list of hyper-parameters via the argument ‘hyper’. The list can have the following named components
a0, b0: shape parameters of the Beta priors (
\pi^{a_{0}-1}(1-\pi)^{b_{0}-1}) on\pi_{0}.c1, c2: the shape parameter and the rate parameter of the Gamma prior on
\nu.
Please check the references for more details about the prior distributions.
Value
an object of class "pqrBayes" is returned, which is a list with components:
posterior |
posterior samples from the MCMC |
coefficients |
a list of posterior estimates of coefficients |
References
Zhou, F., Ren, J., Ma, S. and Wu, C. (2023). The Bayesian regularized quantile varying coefficient model. Computational Statistics & Data Analysis, 107808 doi:10.1016/j.csda.2023.107808
Ren, J., Zhou, F., Li, X., Ma, S., Jiang, Y. and Wu, C. (2023). Robust Bayesian variable selection for gene-environment interactions. Biometrics, 79(2), 684-694 doi:10.1111/biom.13670
Ren, J., Zhou, F., Li, X., Chen, Q., Zhang, H., Ma, S., Jiang, Y. and Wu, C. (2020) Semi-parametric Bayesian variable selection for gene-environment interactions. Statistics in Medicine, 39: 617– 638 doi:10.1002/sim.8434
Examples
data(data)
g=data$g
y=data$y
u=data$u
e=data$e
## default method
fit1=pqrBayes(g,y,u,e,quant=0.5)
fit1
## non-sparse
sparse=FALSE
fit2=pqrBayes(g,y,u,e,quant=0.5,sparse = sparse)
fit2