Mstep_hist {ppsbm} | R Documentation |
M step for histograms
Description
M step for histograms estimator
Usage
Mstep_hist(data, VE, directed, sparse)
Arguments
data |
Data same of mainVEM |
VE |
Results of the previous VE for iterative computation |
directed |
Boolean for directed (TRUE) or undirected (FALSE) case |
sparse |
Boolean for sparse (TRUE) or not sparse (FALSE) case |
References
BARAUD, Y. & BIRGÉ, L. (2009). Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Related Fields 143, 239–284.
MATIAS, C., REBAFKA, T. & VILLERS, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika.
REYNAUD -BOURET, P. (2006). Penalized projection estimators of the Aalen multiplicative intensity. Bernoulli 12, 633–661.
[Package ppsbm version 0.2.2 Index]