ppgmMESS {ppgm} | R Documentation |
ppgmMESS
Description
This creates a MESS map for given time slices, climate envelopes, and paleoclimate models.
Usage
ppgmMESS(cem_min, cem_max, est, tree, fossils=NULL, timeslice,
which.biovars, path = "", use.paleoclimate=TRUE, paleoclimateUser = NULL,
layerAge=c(0:20), which.plot = c("all","mess","none"))
Arguments
cem_min |
the cem min output from the ppgm function. cbind() if there are multiple variables. |
cem_max |
the cem max output from the ppgm function. cbind() if there are multiple variables. |
est |
the node_est output from the ppgm function, in list format. [tree][1][min and max][no.of species] |
tree |
the phylogeny or multiple phylogenies that show the relationship between species |
fossils |
a matrix with four columns of age to the closest million year integer, longitude, and latitude, in that order, and rows that are entries for fossil occurrences. |
timeslice |
the time in million of years ago to project MESS maps (0 to 20). can handle single timeslice or vector of times. |
which.biovars |
the biovariable number(s) between 1 and 19. |
path |
directory where plots should be stored |
use.paleoclimate |
if left blank, default North America paleoclimate data is used. If FALSE, user submitted paleoclimate must be provided |
paleoclimateUser |
list of data frames with paleoclimates, must be dataframes with columns: GlobalID, Longitude, Latitude, bio1, bio2,...,bio19. |
layerAge |
vector with the ages of the paleoclimate dataframes, if using user submitted paleoclimate data |
which.plot |
"all" plots trait maps and MESS, "mess" plots MESS map, "none" does not plot |
Details
plots MESS maps of climate envelope model for specific time slices. Can either plot individual biovariables, or combined.
Value
list containing array of MESS scores for bioclimatic variables
Author(s)
A. Michelle Lawing, Alexandra F. C. Howard, Maria-Aleja Hurtado-Materon
See Also
ppgm()
Examples
data(sampletrees)
data(occurrences)
sampletrees <- sample(sampletrees,5)
bounds <- list(sigsq = c(min = 0, max = 1000000))
test_ppgm <- ppgm(occurrences = occurrences,trees = sampletrees,
model = "BM", which.biovars = c(1,4,15), bounds = bounds,
control = list(niter = 20))
#extract min climate envelope for species
cem_min <- cbind(test_ppgm$cem[, 1], test_ppgm$cem[, 2], test_ppgm$cem[, 3])
cem_max <- cbind(test_ppgm$cem[, 7], test_ppgm$cem[, 8], test_ppgm$cem[, 9])
rownames(cem_min) <- rownames(cem_max) <- rownames(test_ppgm$cem)
mess <- ppgmMESS(cem_min,cem_max,test_ppgm$node_est,tree=sampletrees,timeslice=10,
which.biovars=c(1,4,15), path=tempdir(), which.plot="none")