predict.ppgam {ppgam} | R Documentation |
Predictions from a fitted ppgam
object
Description
Predictions from a fitted ppgam
object
Usage
## S3 method for class 'ppgam'
predict(object, newdata, type = "link", se.fit = FALSE, ...)
Arguments
object |
a fitted |
newdata |
a data frame |
type |
a character string giving the type of prediction sought; see Details. Defaults to |
se.fit |
a logical: should estimated standard errors be returned? Defaults to |
... |
passed to |
Details
This calls predict.gam and gives predictions of the intensity function of
the Poisson process on the original scale if type = "response"
, on log
scale if type = "link"
(default), and of the design matrix if
type = "lpmatrix"
.
Value
A data frame or list of predictions
References
Youngman, B. D., & Economou, T. (2017). Generalised additive point process models for natural hazard occurrence. Environmetrics, 28(4), e2444.
See Also
Examples
# Times of landfalling US hurricanes
data(USlandfall)
# convert dates to years, as a continuous variable
year <- as.integer(format(USlandfall$date, "%Y"))
day <- as.integer(format(USlandfall$date, "%j"))
USlandfall$year <- year + pmin(day / 365, 1)
hits <- subset(USlandfall, landfall == 1)
# this creates nodes in the default way
m1 <- ppgam( ~ s(year), hits)
predict(m1)
predict(m1, type = "response")
predict(m1, type = "lpmatrix")
predict(m1, newdata = data.frame(year = c(2000, 2001)))
predict(m1, se.fit = TRUE)
[Package ppgam version 1.0.2 Index]