plotPP {ppRep} | R Documentation |
Plot joint and marginal posterior distributions
Description
This convenience function computes and, if desired, visualizes
the joint posterior density of effect size \theta
and power
parameter \alpha
, as well as the marginal posterior
densities of effect size \theta
and power parameter
\alpha
individually. See the functions postPP
,
postPPalpha
, and postPPtheta
for more details
on their computation.
Usage
plotPP(
tr,
sr,
to,
so,
x = 1,
y = 1,
m = 0,
v = Inf,
thetaRange = c(tr - 3 * sr, tr + 3 * sr),
alphaRange = c(0, 1),
nGrid = 100,
plot = TRUE,
CI = FALSE,
...
)
Arguments
tr |
Effect estimate of the replication study. |
sr |
Standard error of the replication effect estimate. |
to |
Effect estimate of the original study. |
so |
Standard error of the replication effect estimate. |
x |
Number of successes parameter of beta prior for |
y |
Number of failures parameter of beta prior for |
m |
Mean parameter of initial normal prior for |
v |
Variance parameter of initial normal prior for |
thetaRange |
Range of effect sizes. Defaults to three standard errors around the replication effect estimate. |
alphaRange |
Range of power parameters. Defaults to the range between zero and one. |
nGrid |
Number of grid points. Defaults to |
plot |
Logical indicating whether data should be plotted. If
|
CI |
Logical indicating whether 95% highest posterior credible
intervals should be plotted. Defaults to |
... |
Additional arguments passed to |
Value
Plots joint and marginal posterior densities, invisibly returns a list with the data for the plots.
Author(s)
Samuel Pawel
See Also
postPP
, postPPalpha
, postPPtheta
Examples
plotPP(tr = 0.2, sr = 0.05, to = 0.15, so = 0.05)