| bfPPtheta {ppRep} | R Documentation |
Bayes factor for testing effect size
Description
This function computes the Bayes factor contrasting
H_0\colon \theta = 0 to H_1\colon \theta \sim
f(\theta | \code{to}, \code{so}, \alpha) for the replication data assuming a normal likelihood. The
prior of the effect size \theta under H_1 is the
posterior of the effect size obtained from combining a normal likelihood
of the original data raised to the power of \alpha with a
flat initial prior with a. Under H_1, the power parameter can
either be fixed to some value between 0 and 1, or it can have a beta
distribution \alpha | H_1 \sim \mbox{Beta}(\code{x},
\code{y}).
Usage
bfPPtheta(tr, sr, to, so, x = 1, y = 1, alpha = NA, ...)
Arguments
tr |
Effect estimate of the replication study. |
sr |
Standard error of the replication effect estimate. |
to |
Effect estimate of the original study. |
so |
Standard error of the replication effect estimate. |
x |
Number of successes parameter for beta prior of power parameter
under |
y |
Number of failures parameter for beta prior of power parameter under
|
alpha |
Power parameter under |
... |
Additional arguments passed to |
Value
Bayes factor (BF > 1 indicates evidence for H_0, whereas BF
< 1 indicates evidence for H_1)
Author(s)
Samuel Pawel
See Also
Examples
## uniform prior on power parameter
bfPPtheta(tr = 0.09, sr = 0.0518, to = 0.205, so = 0.0506)
## power parameter fixed to alpha = 1
bfPPtheta(tr = 0.090, sr = 0.0518, to = 0.205, so = 0.0506, alpha = 1)