pi.banzhaf {powerindexR} | R Documentation |
Power based on the Banzhaf index.
Description
This function determines the distribution of the power based on the Banzhaf index and the Banzaf-Owen value.
Usage
pi.banzhaf(quota, weights, partition = NULL, normalized = FALSE, swing = FALSE)
Arguments
quota |
Numerical value that represents the majority in a given voting. |
weights |
Numerical vector of dimension |
partition |
Numerical vector that indicates the partition of voters. Each component indicates the element of the partition to which such voter belongs. If it is not |
normalized |
Logical option to obtain the normalized Banzhaf values. |
swing |
Logical option to obtain the number of swings of each voter. |
Value
Banzhaf value |
The Banzhaf value, if |
Banzhaf-Owen value |
The Banzhaf-Owen value, if |
Author(s)
Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.
References
Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44.
Brams, S. J., & Affuso, P. J. (1976). Power and size: A new paradox. Theory and Decision, 7(1-2), 29-56.
Examples
# Example Banzhaf value
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
pi.banzhaf(quota,weights)
pi.banzhaf(quota,weights,normalized=TRUE)
# Example Banzhaf-Owen value
quota<-30
weights<-c(28, 16, 5, 4, 3, 3)
# Partition={{1},{2,4,6},{3,5}}
pi.banzhaf(quota,weights,partition=c(1,2,3,2,3,2))