scoreTest {powerPLS} | R Documentation |
Score test
Description
Performs randomization test based on predictive score vector
Usage
scoreTest(X, Y, nperm = 100, A, randomization = FALSE, Y.prob = FALSE, eps = 0.01,...)
Arguments
X |
data matrix where columns represent the |
Y |
data matrix where columns represent the two classes and
rows the |
nperm |
number of permutations. Default 100. |
A |
number of score components |
randomization |
Boolean value. Default @FALSE. If @TRUE the permutation p-value is computed |
Y.prob |
Boolean value. Default @FALSE. IF @TRUE |
eps |
Default 0.01. |
... |
Further parameters. |
Value
Returns a list with the corresponding statistical tests, raw and adjusted p-values
List with the following objects: pv
: raw p-value, pv_adj
: adjusted p-value, test
estimated statistical test.
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
See Also
The type of tests implemented: mccTest
R2Test
.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- scoreTest(X = datas$X, Y = datas$Y, A = 1)
out