| PLSc {powerPLS} | R Documentation |
PLS
Description
Performs Partial Least Squares two class
Usage
PLSc(X, Y, A, scaling = "auto-scaling", post.transformation = TRUE,
eps = 0.01, Y.prob = FALSE, transformation = "ilr")
Arguments
X |
data matrix where columns represent the |
Y |
data matrix where columns represent the two classes and
rows the |
A |
number of score components |
scaling |
type of scaling, one of
|
post.transformation |
Boolean value. @TRUE if you want to apply post transformation. Default @TRUE |
eps |
Default 0.01. |
Y.prob |
Boolean value. Default @FALSE. IF @TRUE |
transformation |
transformation used to map |
Value
Returns a list with the following objects:
- W: matrix of weights
- X_loading: matrix of X loading
- Y_loading: matrix of Y loading
- X: matrix of X data
- Y: matrix of Y data
- T_score: matrix of scores
- Y_fitted: fitted Y matrix
- B: Matrix regression coefficients
- M: number of orthogonal components if post transformation is applied.
Author(s)
Angela Andreella
References
Stocchero, M., De Nardi, M., & Scarpa, B. (2021). PLS for classification. Chemometrics and Intelligent Laboratory Systems, 216, 104374.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- PLSc(X = datas$X, Y = datas$Y, A = 3)