powerInteract2by2 {powerMediation} | R Documentation |
Power Calculation for Interaction Effect in 2x2 Two-Way ANOVA Given Effect Sizes
Description
Power calculation for interaction effect in 2x2 two-way ANOVA given effect sizes.
Usage
powerInteract2by2(n, tauBetaSigma, alpha = 0.05, nTests = 1, verbose = FALSE)
Arguments
n |
integer. Number of subjects per group. |
tauBetaSigma |
Effect sizes |
alpha |
family-wise type I error rate. |
nTests |
integer. For high-throughput omics study,
we perform two-way ANOVA for each of 'nTests' probes.
We use Bonferroni correction to control for family-wise type I error rate.
That is, for each probe, type I error rate would be |
verbose |
logical. Indicating if intermediate results should be printed out. |
Details
We assume the following model:
y_{ijk}=\mu+\tau_i + \beta_j + \left(\tau\beta\right)_{ij} + \epsilon_{ijk},
where i=1,\ldots, a, j=1,\ldots, b, k=1, \ldots, n
, \sum_{i=1}^{a}\tau_i = 0
,
\sum_{j=1}^{b}\beta_j = 0
, \sum_{i=1}^{a} \left(\tau\beta\right)_{ij} = 0
,
\sum_{j=1}^{b} \left(\tau\beta\right)_{ij} = 0
,
and \epsilon_{ijk}\stackrel{i.i.d}{\sim} N\left(0, \sigma^2\right)
.
The group means are
\mu_{ij} = \mu+\tau_i + \beta_j + \left(\tau\beta\right)_{ij}, i=1 \ldots, a,
j=1,\ldots, b.
Note that \mu = \sum_{i=1}^{a}\sum_{j=1}^b \mu_{ij} / (ab)
,
\tau_i = \sum_{j=1}^b \mu_{ij}/b - \mu
, and
\beta_j = \sum_{i=1}^a \mu_{ij}/a - \mu
.
The null hypothesis H_0
: all \left(\tau\beta\right)_{ij}, i=1, \ldots, a, j=1,\ldots, b
are equal to zero.
The alternative hypothesis H_a
: at least one \left(\tau\beta\right)_{ij}
is different from zero.
The F test statistic is
F=MS_{AB}/MS_{E}\stackrel{H_a}{\sim} F_{(a-1)(b-1), ab(n - 1), ncp},
where ncp
is the
non-centrality parameter of the F test statistic:
ncp=n\sum_{i=1}^{a}\sum_{j=1}^{b}\left[\frac{\left(\tau\beta\right)_{ij}}{\sigma}\right]^2.
For the scenario a=b=2
, we have
\left(\tau\beta\right)_{11}=\theta
,
\left(\tau\beta\right)_{12}=-\theta
,
\left(\tau\beta\right)_{21}=-\theta
,
\left(\tau\beta\right)_{22}=\theta
.
Hence,
the non-centrality parameter can be simplified to
ncp=4n\left(\frac{\theta}{\sigma}\right)^2.
The power for testing the null hypothesis H_0
versus
the alternative hypothesis H_a
is
power=Pr\left(F > F_0 | H_a\right),
where the rejection region boundary F_0
satisfies:
Pr\left(F > F_0 | H_0\right) = \alpha/nTests.
Value
A list with 5 elements:
power |
the power of the two-way ANOVA test |
df1 |
the first degree of freedom of the F test statistic ( |
df2 |
the second degree of freedom of the F test statistic ( |
F0 |
the rejection region boundary |
ncp |
the non-centrality parameter |
Author(s)
Weiliang Qiu weiliang.qiu@gmail.com
References
Chow SC, Shao J, and Wang H. Sample size calculations in clinical research. 2nd edition. Chapman & Hall/CRC. 2008
Montgomery DC. Design and Analysis of Experiments. 8th edition. John Wiley & Sons. Inc.
Examples
n = 25
tauBetaSigma = 0.3
# power = 0.8437275
res2 = powerInteract2by2(n = n, tauBetaSigma = tauBetaSigma,
alpha = 0.05, nTests = 1, verbose = TRUE)