ReversalPowerLogistic {powdist} | R Documentation |
The Reversal Power Logistic Distribution
Description
Density, distribution function, quantile function and random generation for the reversal power logistic distribution with parameters mu, sigma and lambda.
Usage
drplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
prplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrplogis(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power Logistic distribution has density
,
where
is the location paramether,
the scale parameter and
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
Nagler J. (1994) Scobit: an alternative estimator to logit and probit. American Journal Political Science, 38(1), 230-255.
Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.
Examples
drplogis(1, 1, 3, 4)
prplogis(1, 1, 3, 4)
qrplogis(0.2, 1, 3, 4)
rrplogis(5, 2, 3, 4)