PowerLogistic {powdist} | R Documentation |
The Power Logistic Distribution
Description
Density, distribution function, quantile function and random generation for the power logistic distribution with parameters mu, sigma and lambda.
Usage
dplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
pplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rplogis(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Logistic distribution has density
f(x)=\lambda \left [\frac{1}{1+e^{-\left ( \frac{x-\mu}{\sigma} \right )} }\right ]^{\lambda-1}\left[\frac{ e^{-\left ( \frac{x-\mu}{\sigma} \right )} }{\sigma\left ( 1+e^{-\left ( \frac{x-\mu}{\sigma} \right )} \right )^2}\right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
Lemonte, A. J. and Bazán, J. L. (2017) New links for binary regression: an application to coca cultivation in Peru. TEST.
Nadarajah, S. (2009) The skew logistic distribution. AStA Advances in Statistical Analysis, 93, 187-203.
Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.
Examples
dplogis(1, 1, 3, 4)
pplogis(1, 1, 3, 4)
qplogis(0.2, 1, 3, 4)
rplogis(5, 2, 3, 4)