PowerLaplace {powdist} | R Documentation |
The Power Laplace Distribution
Description
Density, distribution function, quantile function and random generation for the power Laplace distribution with parameters mu, sigma and lambda.
Usage
dplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
pplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rplaplace(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Laplace distribution has density
f(x)=\lambda\left[\frac{1}{2}+\frac{\left(1-e^{-\frac{\left|x-\mu\right|}{\sigma}}\right)}{2}\textrm{sign}\left(\frac{x-\mu}{\sigma}\right)\right]^{\lambda-1}\left[\frac{e^{-\frac{\left|x-\mu\right|}{\sigma}}}{2\sigma}\right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
Examples
dplaplace(1, 1, 3, 4)
pplaplace(1, 1, 3, 4)
qplaplace(0.2, 1, 3, 4)
rplaplace(5, 2, 3, 4)