PowerCauchy {powdist} | R Documentation |
The Power Cauchy Distribution
Description
Density, distribution function, quantile function and random generation for the power Cauchy distribution with parameters mu, sigma and lambda.
Usage
dpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
ppcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rpcauchy(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Cauchy distribution has density
f(x)=\lambda\left [\frac{1}{\pi}\arctan\left ( \frac{x-\mu}{\sigma} \right )+\frac{1}{2} \right ]^{\lambda -1} \left[ \frac{1}{\pi\sigma\left( 1+\left (\frac{x-\mu}{\sigma} \right )^{2} \right)} \right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Examples
dpcauchy(1, 1, 3, 4)
ppcauchy(1, 1, 3, 4)
qpcauchy(0.2, 1, 3, 4)
rpcauchy(5, 2, 3, 4)