plot.powRICLPM {powRICLPM} | R Documentation |
Plot results from powRICLPM
object
Description
Visualizes (using ggplot2) the results from a powRICLPM
analysis, for a specific parameter, across all experimental conditions. By default, sample size is plotted on the x-axis, power on the y-axis, and results are grouped by the number of time points and wrapped by the proportion of between-unit variance. Optionally, the y
argument can be used to change the variable on the y-axis to other outcomes from the powRICLPM
analysis.
Usage
## S3 method for class 'powRICLPM'
plot(x, y = "power", ..., parameter = NULL)
Arguments
x |
A |
y |
(optional) A |
... |
(don't use) |
parameter |
Character string of length denoting the parameter to visualize the results for. |
Details
y-axis options
The following outcomes can be plotted on the y-axis:
-
average
: The average estimate. -
MSE
: The mean square error. -
coverage
: The coverage rate -
accuracy
: The average width of the confidence interval. -
SD
: Standard deviation of parameter estimates. -
SEAvg
: Average standard error. -
bias
: The absolute difference between the average estimate and population value.
Value
A ggplot2
object.
See Also
give
: Extract information (e.g., performance measures) for a specific parameter, across all experimental conditions. This function is used internally in plot.powRICLPM
.
Examples
# Visualize power for "wB2~wA1" across simulation conditions
plot(out_preliminary, parameter = "wB2~wA1")
# Visualize bias for "wB2~wA1" across simulation conditions
plot(out_preliminary, y = "bias", parameter = "wB2~wA1")
# Visualize coverage rate for "wB2~wA1" across simulation conditions
plot(out_preliminary, y = "coverage", parameter = "wB2~wA1")
# Visualize MSE for autoregressive effect across simulation conditions
plot(out_preliminary, y = "MSE", parameter = "wA2~wA1")
# Error: No parameter specified
try(plot(out_preliminary))