Data Processing after Running 'GGIR' for Accelerometer Data


[Up] [Top]

Documentation for package ‘postGGIR’ version 2.4.0.2

Help Pages

ActCosinor2 Cosinor Model for Circadian Rhythmicity
ActCosinor_long2 Cosinor Model for Circadian Rhythmicity for the Whole Dataset
ActExtendCosinor2 Extended Cosinor Model for Circadian Rhythmicity
ActExtendCosinor_long2 Cosinor Model for Circadian Rhythmicity for the Whole Dataset
afterggir Main Call for Data Processing after Runing GGIR for Accelerometer Data
bin_data2 Bin data into longer windows
create.postGGIR Create a template shell script of postGGIR
data.imputation Data imputation for the cleaned data with annotation
DataShrink Annotating the merged data for all accelerometer files in the GGIR output
fragmentation2 Fragmentation Metrics
fragmentation_long2 Fragmentation Metrics for Whole Dataset
ggir.datatransform Transform the data and merge all accelerometer files in the GGIR output
ggir.summary Description of all accelerometer files in the GGIR output
IS2 Interdaily Statbility
IS_long2 Interdaily Statbility for the Whole Dataset
IV2 Intradaily Variability
IV_long2 Intradaily Variability for the Whole Dataset
jive.predict2 Modified jive.predict function (package: r.jive)
PAfun Timne Metrics for Whole Dataset
pheno.plot View phenotype variables
RA2 Relative Amplitude
RA_long2 Relative Amplitude for the Whole Datset
SVDmiss2 Modified SVDmiss function (package SpatioTemporal)
Time2 Time of A Certain activity State
Time_long2 Timne Metrics for Whole Dataset
Tvol2 Total Volumen of Activity for Whole Dataset
wear_flag Create Wear/Nonwear Flags