op.arima {popstudy} | R Documentation |
op.arima
Description
Estimates the best predictive ARIMA model using overparameterization.
Usage
op.arima(
arima_process = c(p = 1, d = 1, q = 1, P = 1, D = 1, Q = 1),
seasonal_periodicity,
time_serie,
reg = NULL,
horiz = 12,
prop = 0.8,
training_weight = 0.2,
testing_weight = 0.8,
parallelize = FALSE,
clusters = detectCores(logical = FALSE),
LAMBDA = NULL,
ISP = 100,
...
)
Arguments
arima_process |
numeric. The ARIMA(p,d,q)(P,D,Q) process. |
seasonal_periodicity |
numeric. The seasonal periodicity, 12 for monthly data. |
time_serie |
ts. The univariate time series object to estimate the models. |
reg |
Optionally, a vector or matrix of external regressors, which must have the same number of rows as time_serie. |
horiz |
numeric. The forecast horizon. |
prop |
numeric. Data proportion for training dataset. |
training_weight |
numeric. Importance weight for the goodness of fit and precision measures in the training dataset. |
testing_weight |
numeric. Importance weight for the goodness of fit and precision measures in the testing dataset. |
parallelize |
logical. If TRUE, then use parallel processing. |
clusters |
numeric. The number of clusters for the parallel process. |
LAMBDA |
Optionally. See |
ISP |
numeric. Overparameterization indicator to filter the estimated models in the (0,100] interval. |
... |
additional arguments to be passed to |
Value
op.arima
returns an object of class list
with the following components:
arima_models |
all models defined by the |
final_measures |
goodness of fit and precision measures for each model. |
bests |
a sorted list with the best ARIMA models. |
best_model |
a list of "Arima", see |
Author(s)
Cesar Gamboa-Sanabria
References
Gamboa-Sanabria C (2022). La Sobreparametrizacion en el ARIMA: una aplicacion a datos costarricenses. Master's thesis, Universidad de Costa Rica.
Examples
op.arima(arima_process = c(2,1,2,2,1,2),
time_serie = AirPassengers,
seasonal_periodicity = 12, parallelize=FALSE)