inertia {popdemo} | R Documentation |
Calculate population inertia
Description
Calculate population inertia for a population matrix projection model.
Usage
inertia(A, vector = "n", bound = NULL, return.N = FALSE, t = NULL)
Arguments
A |
a square, primitive, irreducible, non-negative numeric matrix of any dimension |
vector |
(optional) a numeric vector or one-column matrix describing the age/stage distribution ('demographic structure') used to calculate a 'case-specific' maximal amplification |
bound |
(optional) specifies whether an upper or lower bound should be calculated (see details). |
return.N |
(optional) if |
t |
(optional) the projection interval at which |
Details
A nonstable population, when it achieves asymptotic growth following transient
dynamics, is a fixed ratio of the size of a population projected with the same
initial size but stable structure. inertia
calculates the value of this
ratio (Koons et al. 2007)
If vector="n"
then either bound="upper"
or bound="lower"
must be specified, which calculate the upper or lower bound on population
inertia (i.e. the largest and smallest values that inertia may take)
respectively. Specifying vector
overrides calculation of a bound, and
will yield a 'case-specific' value for inertia.
inertia
will not work with imprimitive or reducible matrices.
Value
If vector="n"
, the upper bound on inertia of A
if
bound="upper"
and the lower bound on inertia of A
if
bound="lower"
.
If vector
is specified, the case-specific inertia of the model.
If return.N=TRUE
and t
is specified, a list with components:
- inertia
the bound on or case-specific inertia
- N
the population size at specified
t
.
References
Koons et al. (2007) Ecology, 88, 2867-2867.
Stott et al. (2011) Ecol. Lett., 14, 959-970.
See Also
Transfer function methods for inertia: inertia.tfa
,
inertia.tfamatrix
, inertia.tfsens
,
inertia.tfsensmatrix
Other TransientIndices:
Kreiss()
,
maxamp()
,
maxatt()
,
reac()
Examples
# Create a 3x3 PPM
( A <- matrix(c(0,1,2,0.5,0.1,0,0,0.6,0.6), byrow=TRUE, ncol=3) )
# Create an initial stage structure
( initial <- c(1,3,2) )
# Calculate the upper bound on inertia of A
inertia(A,bound="upper")
# Calculate the lower bound on inertia of A
inertia(A,bound="lower")
# Calculate case-specific inertia of A and initial
inertia(A, vector=initial)
# Calculate case-specific inertia of A and initial and
# return realised population size at t=25
inertia(A, vector=initial, return.N=TRUE, t=25)