monkeyflower {popbio} | R Documentation |
Projection matrices for monkeyflower
Description
Pooled and annual projection matrices of central and marginal populations of monkeyflowers (Mimulus cardinalis and M. lewisii)
Usage
monkeyflower
Format
A data frame with 32 matrices, arranged with one matrix per row
species
M. cardinalis or M. lewisii
site
Study site
year
Start year of projection interval or pooled for all three years
a11
matrix element a11; seed to seed transition or seed bank survival
a12
matrix element a12; small nr to seed - fertility
a13
matrix element a13; large nr to seed - fertility
a14
matrix element a14; reprod to seed - fertility
a21
matrix element a21; seed to small nr - growth
a22
matrix element a22; small nr to small nr -stasis
a23
matrix element a23; large nr to small nr - regress
a24
matrix element a24; reprod to small nr - regress
a31
matrix element a31; seed to large nr - growth
a32
matrix element a32; small nr to large nr - growth
a33
matrix element a33; large nr to large nr - stasis
a34
matrix element a34; reprod to large nr - regress
a41
matrix element a41; seed to reprod - growth
a42
matrix element a42; small nr to reprod - growth
a43
matrix element a43; large nr to reprod - growth
a44
matrix element a44; reprod to reprod - stasis
Details
Matrix constructed using a post-breeding census with four stage classes: Seeds, small non-reproductive, large non-reproductive, and reproductive.
Source
http://www.esapubs.org/archive/ecol/E087/126/appendix-E.htm
References
Amy Lauren Angert. 2006. Demography of central and marginal populations of monkeyflowers (Mimulus cardinalis and M. lewisii). Ecology 87:2014-2025.
Examples
monkeyflower
## convert M. cardinalis rows to list of 16 matrices
A <- subset(monkeyflower, species == "cardinalis")
# use as.matrix to convert data.frame to numeric matrix
A <- split(as.matrix(A[, 4:19]), paste(A$site, A$year))
stages <- c("seed", "sm.nr", "lg.nr", "repro")
## convert to list of 16 matrices
A <- lapply(A, matrix, nrow = 4, byrow = TRUE, dimnames = list(stages, stages))
A[8]
image2(A[[8]], round = 8, mar = c(1, 3, 4.5, 1))
title(paste("M. cardinalis - ", names(A[8])), line = 2.5)
## plot like figure 1A
x <- matrix(sapply(A, lambda), ncol = 4)
colnames(x) <- c("BU", "CA", "RP", "WA")
rownames(x) <- c(2000:2002, "pooled")
x <- x[, c(1, 3, 4, 2)]
colrs <- gray(0:3 / 3)[c(1, 3, 2, 4)]
barplot(x, beside = TRUE, las = 1, col = colrs, ylim = c(0, 2),
ylab = "Population growth rate", main = "Mimulus cardinalis")
box()
abline(h = 1, lwd = .5)
legend(1, 1.95, rownames(x), fill = colrs, bty = "n")