boot.transitions {popbio} | R Documentation |
Bootstrap observed census transitions
Description
Calculate bootstrap distributions of population growth rates (lambda), stage vectors, and projection matrix elements by randomly sampling with replacement from a stage-fate data frame of observed transitions
Usage
boot.transitions(transitions, iterations, by.stage.counts = FALSE, ...)
Arguments
transitions |
a stage-fate data frame with stage or age class in the current census, fate in the subsequent census, and one or more fertility columns |
iterations |
Number of bootstrap iterations |
by.stage.counts |
Resample transitions with equal probability (default) or by subsets of initial stage counts |
... |
additional options passed to |
Value
A list with 3 items
lambda |
A vector containing bootstrap values for lambda |
matrix |
A matrix containing bootstrap transtion matrices with one projection matrix per row. |
vector |
A matrix containing bootstrap stage vectors with one stage vector per row. |
Author(s)
Chris Stubben
References
see Morris and Doak 2005 in http://esapubs.org/Archive/mono/M075/004/appendix-A.htm for resampling by stage class counts
See Also
Examples
## create stage-fate dataframe using merge and subset
trans01 <- subset(
merge(test.census, test.census, by="plant", sort=FALSE),
year.x==2001 & year.y==2002)
## format column and row names
trans01 <- trans01[,c(1:4,6)]
colnames(trans01)[2:5] <- c("year", "stage", "fruits", "fate")
rownames(trans01) <- 1:nrow(trans01)
# order stage columns corresponding to matrix
trans01$stage <- ordered(trans01$stage,
levels = c("seedling", "vegetative", "reproductive"))
## add individual fertilities using prebreeding census with no seed bank
## based on the proportional reproductive outputs of flowering plants
## and the total number of seedlings at the end of the projection interval
seedlings <- nrow(subset(test.census, year==2002 & stage=="seedling"))
trans01$seedling <- trans01$fruits/sum(trans01$fruits) * seedlings
trans01
## Step by step instructions for bootstrapping dataframe
n <- nrow(trans01)
n
set.seed(77)
x <- sample(n, replace=TRUE)
x
bt <- trans01[x,]
bt
projection.matrix(bt)
## or respample by stage class counts
lapply(split(trans01, trans01$stage, drop=TRUE),
function(x) x[sample(nrow(x), replace=TRUE),])
## using boot.transitions
boot.transitions(trans01, 5)
boot.transitions(trans01, 5, by.stage=TRUE)
## Aquilegia example
x <- subset(aq.trans, year==1996)
# calculate lamda, seed survival and recruitment rate using aq.matrix
rec <- nrow(subset(aq.trans, year==1997 & stage == "recruit"))
aq.96 <- aq.matrix(x, rec)
# add individual fertilities to data frame only
aq.96.trans <- aq.matrix(x, rec, summary=FALSE)
# pass estimated transitions in aq.96 to projection matrix
aq.96.boot <- boot.transitions(aq.96.trans, 200,
add=c(1,1, aq.96$seed.survival, 2,1, aq.96$recruitment.rate) )
# calculate percentile intervals using quantile()
ci <- quantile(aq.96.boot$lambda, c(0.025,0.975) )
aq.96$lambda
ci
# plot histogram
hist(aq.96.boot$lambda, col="green", xlab="Lambda",
main=paste('Bootstrap estimates of population\ngrowth rate from 1996-1997'))
abline(v=ci, lty=3)