LTRE {popbio} | R Documentation |
Life Table Response Experiment
Description
Evaluate sensitivities in a fixed Life Table Response Experiment (LTRE)
Usage
LTRE(trts, ref)
Arguments
trts |
A treatment matrix or a list of two or more treatment matrices |
ref |
A reference matrix |
Details
Sensitivities are evaluated midway between the treatment and reference matrices as described in section 10.1.1 in Caswell (2001).
Value
A matrix of contributions (equation 10.4 in Caswell) or a list of matrices with one matrix of contributions per treatment
Note
The examples of a fixed LTRE are from Horvitz, C. C., D. W. Schemske, and H. Caswell. 1997. The relative importance of life-history stages to population growth: prospective and retrospective analyses. Pages 247-271 in S. Tuljapurkar and H. Caswell, editors. Structured population models in marine, terrestrial and freshwater systems. Chapman and Hall, New York. A.L. Angert. 2006. Demography of central and marginal populations of monkeyflowers (Mimulus cardinalis and M. lewisii). Ecology 87:2014-2025.
Author(s)
Chris Stubben
See Also
Check the demo(Caswell)
for variance decomposition in a
random design using killer whale.
Examples
####### Calathea ovandensis
calathea_pool <- calathea[['pooled']]
## Create plots like FIGURE 7 in Horvitz et al 1997
plots <- split(calathea[-17], rep(1:4,each=4))
## use Mean matrix since pooled not available by plot
plots <- lapply(plots, mean)
Cm <- LTRE(plots, calathea_pool)
pe <- sapply(Cm, sum)
barplot(pe, xlab="Plot", ylab="Plot effect" , ylim=c(-.25, .25),
col="blue", las=1)
abline(h=0)
box()
title(expression(italic("Calathea ovandensis")))
##YEARS -- split recycles vector
yrs <- split(calathea[-17], 1:4)
yrs <- lapply(yrs, mean)
names(yrs) <- 1982:1985
Cm <- LTRE(yrs, calathea_pool)
ye <- sapply(Cm, sum)
barplot(ye, xlab="Year", ylab="Year effect" , ylim=c(-.25, .25), col="blue", las=1)
abline(h=0)
box()
title(expression(italic("Calathea ovandensis")))
## INTERACTION
Cm <- LTRE(calathea[-17], calathea_pool)
ie <- sapply(Cm, sum)
## minus plot, year effects
ie<- ie - rep(pe, each=4) - rep(ye, 4)
names(ie) <- NULL
names(ie)[seq(1,16,4)] <- 1:4
barplot(ie, xlab="Plot (years 82-83 to 85-86)", ylab="Interaction effect" ,
ylim=c(-.25, .25), col="blue", las=1)
abline(h=0)
box()
title(expression(italic("Calathea ovandensis")))
####### Mimulus
## Pooled M. cardinalis reference matrix kindly provided by Amy Angert 1/2/2008.
m_card_pool <- matrix( c(
1.99e-01, 8.02e+02, 5.82e+03, 3.05e+04,
2.66e-05, 7.76e-02, 2.31e-02, 1.13e-03,
7.94e-06, 8.07e-02, 3.22e-01, 2.16e-01,
2.91e-07, 1.58e-02, 1.15e-01, 6.01e-01), byrow=TRUE, nrow=4)
## Population effects using pooled population matrices
card <- subset(monkeyflower, species=="cardinalis" & year=="pooled")
## split rows into list of 4 matrices
Atrt <- lapply(split(as.matrix(card[,4:19]), 1:4), matrix, nrow=4, byrow=TRUE)
names(Atrt) <- card$site
Cm <- LTRE(Atrt, m_card_pool)
x <- sapply(Cm, sum)
x
names(x) <- c("BU", "RP", "WA", "CA")
## Plot like Figure 2A in Angert (2006)
op <- par(mar=c(5,5,4,1))
barplot(x, xlab="Population", ylab="", xlim=c(0,6.5), ylim=c(-.4, .4),
las=1, space=.5, col="blue")
abline(h=0)
mtext(expression(paste(sum(a[ij]), " contributions")), 2, 3.5)
title(expression(paste(italic("M. cardinalis"), " Population effects")))
box()
## and Plot like Figure 3A
x <- matrix(unlist(Cm), nrow=4, byrow=TRUE)
colnames(x) <- paste("a", rep(1:4, each=4), 1:4, sep="")
bp <- barplot(x[1:2,], beside=TRUE, ylim=c(-.2,.2), las=1,
xlab="Transition", ylab="", xaxt='n')
mtext(expression(paste("Contribution of ", a[ij], "to variation in ", lambda)), 2, 3.5)
## rotate labels
text(bp[1,]-0.5, -.22, labels=colnames(x), srt=45, xpd=TRUE)
title(expression(paste(italic("M. cardinalis"), " Range center")))
box()
par(op)