poolcost_t {pooling} | R Documentation |
Visualize Total Costs for Pooling Design as a Function of Pool Size
Description
Useful for determining whether pooling is a good idea, what pool size minimizes costs, and how many assays are needed for a target power.
Usage
poolcost_t(g = 1:10, d = NULL, mu1 = NULL, mu2 = NULL,
sigsq = NULL, sigsq1 = sigsq, sigsq2 = sigsq, sigsq_p = 0,
sigsq_m = 0, multiplicative = FALSE, alpha = 0.05, beta = 0.2,
assay_cost = 100, other_costs = 0, labels = TRUE, ylim = NULL)
Arguments
g |
Numeric vector of pool sizes to include. |
d |
Numeric value specifying true difference in group means. |
mu1 , mu2 |
Numeric value specifying group means. Required if
|
sigsq |
Numeric value specifying the variance of observations. |
sigsq1 , sigsq2 |
Numeric value specifying the variance of observations for each group. |
sigsq_p |
Numeric value specifying the variance of processing errors. |
sigsq_m |
Numeric value specifying the variance of measurement errors. |
multiplicative |
Logical value for whether to assume multiplicative rather than additive errors. |
alpha |
Numeric value specifying type-1 error rate. |
beta |
Numeric value specifying type-2 error rate. |
assay_cost |
Numeric value specifying cost of each assay. |
other_costs |
Numeric value specifying other per-subject costs. |
labels |
Logical value. |
ylim |
Numeric vector. |
Value
Plot of total costs vs. pool size generated by
ggplot
.
Examples
# Plot total study costs vs. pool size for d = 0.25, sigsq = 1, and costs of
# $100 per assay and $0 in other per-subject costs.
poolcost_t(d = 0.25, sigsq = 1)
# Repeat but with additive processing error and $10 in per-subject costs.
poolcost_t(d = 0.25, sigsq = 1, sigsq_p = 0.5, other_costs = 10)