plot_dfa2 {pooling} | R Documentation |
Plot Log-OR vs. X for Gamma Discriminant Function Approach
Description
Archived on 7/23/2018. Please use plot_gdfa
instead.
Usage
plot_dfa2(estimates, varcov = NULL, xrange, xname = "X",
cvals = NULL, set_labels = NULL, set_panels = TRUE)
Arguments
estimates |
Numeric vector of point estimates for
|
varcov |
Numeric matrix with variance-covariance matrix for
|
xrange |
Numeric vector specifying range of X values to plot. |
xname |
Character vector specifying name of X variable, for plot title and x-axis label. |
cvals |
Numeric vector or list of numeric vectors specifying covariate values to use in log-odds ratio calculations. |
set_labels |
Character vector of labels for the sets of covariate
values. Only used if |
set_panels |
Logical value for whether to use separate panels for each set of covariate values, as opposed to using different colors on a single plot. |
Value
Plot of log-OR vs. X
generated by
ggplot
.
Examples
# Fit Gamma discriminant function model for poolwise Xtilde vs. (Y, C),
# without assuming a constant log-OR. Ignoring processing errors for simplicity.
data(pdat2)
dat <- pdat2$dat
c.list <- pdat2$c.list
fit <- p_dfa_xerrors2(
g = dat$g,
y = dat$y,
xtilde = dat$xtilde,
c = c.list,
errors = "neither",
constant_or = FALSE
)
# Plot estimated log-OR vs. X at mean value for C
p <- plot_dfa2(
estimates = fit$estimates,
varcov = fit$theta.var,
xrange = range(dat$xtilde / dat$g),
cvals = mean(unlist(c.list))
)
p
[Package pooling version 1.1.2 Index]