p_logreg {pooling} | R Documentation |
Poolwise Logistic Regression
Description
Fit homogeneous-pools logistic regression model described by Weinberg & Umbach (1999).
Usage
p_logreg(g, y, x, method = "glm", prev = NULL, samp_y1y0 = NULL,
estimate_var = TRUE, start = 0.01, lower = -Inf, upper = Inf,
nlminb_list = list(control = list(trace = 1, eval.max = 500, iter.max =
500)), hessian_list = list(method.args = list(r = 4)))
Arguments
g |
Numeric vector with pool sizes, i.e. number of members in each pool. |
y |
Numeric vector with poolwise |
x |
Numeric matrix with poolwise |
method |
Character string specifying method to use for estimation.
Choices are "glm" for |
prev |
Numeric value specifying disease prevalence, allowing
for valid estimation of the intercept with case-control sampling. Can specify
|
samp_y1y0 |
Numeric vector of length 2 specifying sampling probabilities
for cases and controls, allowing for valid estimation of the intercept with
case-control sampling. Can specify |
estimate_var |
Logical value for whether to return variance-covariance matrix for parameter estimates. |
start |
Numeric value specifying starting values for parameters. Only
used if |
lower |
Numeric value specifying lower bounds for parameters. Only used
if |
upper |
Numeric value specifying upper bounds for parameters. Only used
if |
nlminb_list |
List of arguments to pass to |
hessian_list |
List of arguments to pass to
|
Value
List containing:
Numeric vector of parameter estimates.
Variance-covariance matrix (if
estimate_var = TRUE
).Fitted
glm
object (ifmethod = "glm"
) or returnednlminb
object (ifmethod = "ml"
).Akaike information criterion (AIC).
References
Weinberg, C.R. and Umbach, D.M. (1999) "Using pooled exposure assessment to improve efficiency in case-control studies." Biometrics 55: 718–726.
Weinberg, C.R. and Umbach, D.M. (2014) "Correction to 'Using pooled exposure assessment to improve efficiency in case-control studies' by Clarice R. Weinberg and David M. Umbach; 55, 718–726, September 1999." Biometrics 70: 1061.
Examples
# Load dataset containing (Y, Xtilde, C) values for pools of size 1, 2, and 3
data(pdat1)
# Estimate log-OR for Xtilde and Y adjusted for C
fit <- p_logreg(g = pdat1$g, y = pdat1$allcases, x = pdat1[, c("xtilde", "c")])
fit$theta.hat