p_linreg_yerrors {pooling} | R Documentation |
Linear Regression of Y vs. Covariates with Y Measured in Pools and (Potentially) Subject to Additive Normal Errors
Description
Assumes outcome given covariates is a normal-errors linear regression. Pooled outcome measurements can be assumed precise or subject to additive normal processing error and/or measurement error. Replicates are supported.
Usage
p_linreg_yerrors(g, ytilde, x = NULL, errors = "processing",
estimate_var = TRUE, start_nonvar_var = c(0.01, 1),
lower_nonvar_var = c(-Inf, 1e-04), upper_nonvar_var = c(Inf, Inf),
nlminb_list = list(control = list(trace = 1, eval.max = 500, iter.max =
500)), hessian_list = list(method.args = list(r = 4)))
Arguments
g |
Numeric vector with pool sizes, i.e. number of members in each pool. |
ytilde |
Numeric vector (or list of numeric vectors, if some pools have
replicates) with poolwise sum |
x |
Numeric matrix with poolwise |
errors |
Character string specifying the errors that |
estimate_var |
Logical value for whether to return variance-covariance matrix for parameter estimates. |
start_nonvar_var |
Numeric vector of length 2 specifying starting value for non-variance terms and variance terms, respectively. |
lower_nonvar_var |
Numeric vector of length 2 specifying lower bound for non-variance terms and variance terms, respectively. |
upper_nonvar_var |
Numeric vector of length 2 specifying upper bound for non-variance terms and variance terms, respectively. |
nlminb_list |
List of arguments to pass to |
hessian_list |
List of arguments to pass to
|
Details
The individual-level model of interest for Y|X is:
Y = beta_0 + beta_x^T X + e, e ~ N(0, sigsq)
The implied model for summed Y*|X* in a pool with g members is:
Y* = g beta_0 + beta_x^T X* + e*, e* ~ N(0, g sigsq)
The assay targets Ybar, the mean Y value for each pool, from which the sum Y* can be calculated as Y* = g Ybar. But the Ybar's may be subject to processing error and/or measurement error. Suppose Ybartilde is the imprecise version of Ybar from the assay. If both errors are present, the assumed error structure is:
Ybartilde = Ybar + e_p I(g > 1) + e_m, e_p ~ N(0, sigsq_p), e_m ~ N(0, sigsq_m)
with the processing error e_p and measurement error e_m assumed independent of each other. This motivates a maximum likelihood analysis for estimating theta = (beta_0, beta_x^T)^T based on observed (Ytilde*, X*) values, where Ytilde* = g Ytildebar.
Value
List containing:
Numeric vector of parameter estimates.
Variance-covariance matrix (if
estimate_var = TRUE
).Returned
nlminb
object from maximizing the log-likelihood function.Akaike information criterion (AIC).
References
Schisterman, E.F., Vexler, A., Mumford, S.L. and Perkins, N.J. (2010) "Hybrid pooled-unpooled design for cost-efficient measurement of biomarkers." Stat. Med. 29(5): 597–613.
Examples
# Load dataset containing data frame with (g, X1*, X2*, Y*, Ytilde*) values
# for 500 pools each of size 1, 2, and 3, and list of Ytilde values where 20
# of the single-specimen pools have replicates. Ytilde values are affected by
# processing error and measurement error; true parameter values are
# beta_0 = 0.25, beta_x1 = 0.5, beta_x2 = 0.25, sigsq = 1.
data(dat_p_linreg_yerrors)
dat <- dat_p_linreg_yerrors$dat
reps <- dat_p_linreg_yerrors$reps
# Fit Ytilde* vs. (X1*, X2*) ignoring errors in Ytilde (leads to loss of
# precision and overestimated sigsq, but no bias).
fit.naive <- p_linreg_yerrors(
g = dat$g,
y = dat$y,
x = dat[, c("x1", "x2")],
errors = "neither"
)
fit.naive$theta.hat
# Account for errors in Ytilde*, without using replicates
fit.corrected.noreps <- p_linreg_yerrors(
g = dat$g,
y = dat$ytilde,
x = dat[, c("x1", "x2")],
errors = "both"
)
fit.corrected.noreps$theta.hat
# Account for errors in Ytilde*, incorporating the 20 replicates
fit.corrected.reps <- p_linreg_yerrors(
g = dat$g,
y = reps,
x = dat[, c("x1", "x2")],
errors = "both"
)
fit.corrected.reps$theta.hat
# In this trial, incorporating replicates resulted in much better estimates
# of sigsq (truly 1), sigsq_p (truly 0.4), and sigsq_m (truly = 0.2) but very
# similar regression coefficient estimates.
fit.corrected.noreps$theta.hat
fit.corrected.reps$theta.hat