p_gdfa {pooling} | R Documentation |
Gamma Discriminant Function Approach for Estimating Odds Ratio with Exposure Measured in Pools and Potentially Subject to Multiplicative Lognormal Errors
Description
Assumes exposure given covariates and outcome is a constant-scale Gamma regression. Pooled exposure measurements can be assumed precise or subject to multiplicative lognormal processing error and/or measurement error. Parameters are estimated using maximum likelihood.
Usage
p_gdfa(g, y, xtilde, c = NULL, constant_or = TRUE,
errors = "processing", estimate_var = TRUE,
start_nonvar_var = c(0.01, 1), lower_nonvar_var = c(-Inf, 1e-04),
upper_nonvar_var = c(Inf, Inf), jitter_start = 0.01,
hcubature_list = list(tol = 1e-08), nlminb_list = list(control =
list(trace = 1, eval.max = 500, iter.max = 500)),
hessian_list = list(method.args = list(r = 4)), nlminb_object = NULL)
Arguments
g |
Numeric vector with pool sizes, i.e. number of members in each pool. |
y |
Numeric vector with poolwise Y values, coded 0 if all members are controls and 1 if all members are cases. |
xtilde |
Numeric vector (or list of numeric vectors, if some pools have replicates) with Xtilde values. |
c |
List where each element is a numeric matrix containing the C values for members of a particular pool (1 row for each member). |
constant_or |
Logical value for whether to assume a constant OR for
X, which means that gamma_y = 0. If |
errors |
Character string specifying the errors that |
estimate_var |
Logical value for whether to return variance-covariance matrix for parameter estimates. |
start_nonvar_var |
Numeric vector of length 2 specifying starting value for non-variance terms and variance terms, respectively. |
lower_nonvar_var |
Numeric vector of length 2 specifying lower bound for non-variance terms and variance terms, respectively. |
upper_nonvar_var |
Numeric vector of length 2 specifying upper bound for non-variance terms and variance terms, respectively. |
jitter_start |
Numeric value specifying standard deviation for mean-0
normal jitters to add to starting values for a second try at maximizing the
log-likelihood, should the initial call to |
hcubature_list |
List of arguments to pass to
|
nlminb_list |
List of arguments to pass to |
hessian_list |
List of arguments to pass to
|
nlminb_object |
Object returned from |
Value
List containing:
Numeric vector of parameter estimates.
Variance-covariance matrix.
Returned
nlminb
object from maximizing the log-likelihood function.Akaike information criterion (AIC).
If constant_or = NULL
, two such lists are returned (one under a
constant odds ratio assumption and one not), along with a likelihood ratio
test for H0: gamma_y = 0
, which is equivalent to
H0: odds ratio is constant
.
References
Lyles, R.H., Van Domelen, D.R., Mitchell, E.M. and Schisterman, E.F. (2015) "A discriminant function approach to adjust for processing and measurement error When a biomarker is assayed in pooled samples." Int. J. Environ. Res. Public Health 12(11): 14723–14740.
Mitchell, E.M, Lyles, R.H., and Schisterman, E.F. (2015) "Positing, fitting, and selecting regression models for pooled biomarker data." Stat. Med 34(17): 2544–2558.
Schisterman, E.F., Vexler, A., Mumford, S.L. and Perkins, N.J. (2010) "Hybrid pooled-unpooled design for cost-efficient measurement of biomarkers." Stat. Med. 29(5): 597–613.
Whitcomb, B.W., Perkins, N.J., Zhang, Z., Ye, A., and Lyles, R. H. (2012) "Assessment of skewed exposure in case-control studies with pooling." Stat. Med. 31: 2461–2472.
Examples
# Load data frame with (g, Y, X, Xtilde) values for 496 pools, list of C
# values for members of each pool, and list of Xtilde values where 25
# single-specimen pools have replicates. Xtilde values are affected by
# processing error and measurement error. True log-OR = 0.5, sigsq_p = 0.25,
# sigsq_m = 0.1.
data(dat_p_gdfa)
dat <- dat_p_gdfa$dat
reps <- dat_p_gdfa$reps
c.list <- dat_p_gdfa$c.list
# Unobservable truth estimator - use precise X's
fit.unobservable <- p_gdfa(
g = dat$g,
y = dat$y,
xtilde = dat$x,
c = c.list,
errors = "neither"
)
fit.unobservable$estimates
# Naive estimator - use imprecise Xtilde's, but treat as precise
fit.naive <- p_gdfa(
g = dat$g,
y = dat$y,
xtilde = dat$xtilde,
c = c.list,
errors = "neither"
)
fit.naive$estimates
# Corrected estimator - use Xtilde's and account for errors (not using
# replicates here)
## Not run:
fit.noreps <- p_gdfa(
g = dat$g,
y = dat$y,
xtilde = dat$xtilde,
c = c.list,
errors = "both"
)
fit.noreps$estimates
# Corrected estimator - use Xtilde's including 25 replicates
fit.reps <- p_gdfa(
g = dat$g,
y = dat$y,
xtilde = reps,
c = c.list,
errors = "both"
)
fit.reps$estimates
# Same as previous, but allowing for non-constant odds ratio.
fit.nonconstant <- p_gdfa(
g = dat$g,
y = dat$y,
xtilde = reps,
c = c.list,
constant_or = FALSE,
errors = "both",
hcubature_list = list(tol = 1e-4)
)
fit.nonconstant$estimates
# Visualize estimated log-OR vs. X based on previous model fit
p <- plot_gdfa(
estimates = fit.nonconstant$estimates,
varcov = fit.nonconstant$theta.var,
xrange = range(dat$xtilde[dat$g == 1]),
cvals = mean(unlist(c))
)
p
## End(Not run)