uSEM {pompom} | R Documentation |
Fit a multivariate time series with uSEM (unified Structural Equation Model).
Description
Fit a multivariate time series with uSEM (unified Structural Equation Model).
Usage
uSEM(var.number,
data,
lag.order = 1,
verbose = FALSE,
trim = FALSE)
Arguments
var.number |
number of variables in the time series |
data |
time series data, must be in long format |
lag.order |
lag order of the model to be fit, default value is 1. Note: Higher order (greater than 1) might not run. |
verbose |
print intermediate model fit (iterations), default value is FALSE |
trim |
to trim the insignificant betas (just one step, not iterative), default value is FALSE |
Details
The purpose of uSEM is to quantify the temporal relations (both contemporaneous and lag-1) between variables. Model specification and estimation can be found in the references.
Value
model fit object generated by lavaan
References
Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified Structural Equation Modeling Approach for the Analysis of Multisubject, Multivariate Functional MRI Data. Human Brain Mapping, 93, 85–93. doi:10.1002/hbm.20259
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage 63(1), 310-319. doi: 10.1016/j.neuroimage.2012.06.026
Gates, K. M., Molenaar, P. C. M., Hillary, F. G., Ram, N., & Rovine, M. J. (2010). Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage, 50(3), 1118–1125. doi: 10.1016/j.neuroimage.2009.12.117
Examples
model.fit <- uSEM(var.number = 3,
data = simts_3node,
lag.order = 1,
verbose = FALSE,
trim = FALSE)
model.fit