| gompertz {pomp} | R Documentation |
Gompertz model with log-normal observations.
Description
gompertz() constructs a ‘pomp’ object encoding a stochastic Gompertz population model with log-normal measurement error.
Usage
gompertz(
K = 1,
r = 0.1,
sigma = 0.1,
tau = 0.1,
X_0 = 1,
times = 1:100,
t0 = 0
)
Arguments
K |
carrying capacity |
r |
growth rate |
sigma |
process noise intensity |
tau |
measurement error s.d. |
X_0 |
value of the latent state variable |
times |
observation times |
t0 |
zero time |
Details
The state process is
X_{t+1} = K^{1-S} X_{t}^S \epsilon_{t},
where S=e^{-r}
and the \epsilon_t are i.i.d. lognormal random deviates with
variance \sigma^2.
The observed variables Y_t are distributed as
Y_t\sim\mathrm{Lognormal}(\log{X_t},\tau).
Parameters include the per-capita growth rate r, the carrying
capacity K, the process noise s.d. \sigma, the
measurement error s.d. \tau, and the initial condition
X_0. The ‘pomp’ object includes parameter
transformations that log-transform the parameters for estimation purposes.
Value
A ‘pomp’ object with simulated data.
See Also
More examples provided with pomp:
blowflies,
childhood_disease_data,
compartmental_models,
dacca(),
ebola,
ou2(),
pomp_examples,
ricker(),
rw2(),
verhulst()
Examples
plot(gompertz())
plot(gompertz(K=2,r=0.01))