| GLM_Model {pomodoro} | R Documentation |
Generalized Linear Model
Description
Generalized Linear Model
Usage
GLM_Model(Data, xvar, yvar)
Arguments
Data |
The name of the Dataset. |
xvar |
X variables. |
yvar |
Y variable. |
Details
Let y be a vector of response variable of accessing credit for each applicant
n, such that y_{i}=1 if the applicant-i
has access to credit, and zero otherwise. Furthermore, let
let \bold{x} = x_{ij}, where
i=1,\ldots,n and j=1,\ldots,p characteristics of the applicants.
The log-odds can be define as:
log(\frac{\pi_{i}}{1-\pi_{i}}) = \beta_{0}+\bold{x}_{\bold{i}}\beta = \beta_{0}+\sum_{i=1}^{p}\beta_{i}\bold{x}_{i}
\beta_{0} is the intercept, \beta = (\beta_{1},\ldots, \beta_{p}) is
a p x 1 vector of coefficients and
\bold{x_{i}} is the i_{th} row of x.
Value
The output from GLM_Model.
Examples
yvar <- c("multi.level")
sample_data <- sample_data[c(1:750),]
xvar <- c("sex", "married", "age", "havejob", "educ", "political.afl",
"rural", "region", "fin.intermdiaries", "fin.knowldge", "income")
BchMk.GLM <- GLM_Model(sample_data, c(xvar, "networth"), yvar )
BchMk.GLM$finalModel
BchMk.GLM$Roc$auc
[Package pomodoro version 3.8.0 Index]