summary.segratioMCMC {polySegratioMM} | R Documentation |
Summary statistics for an segratioMCMC object
Description
Wrapper for summary.mcmc
processing only mixture model parameters
although markers may also easily be summarised. The mean, standard
deviation, naive standard error of the mean (ignoring autocorrelation
of the chain) and time-series standard error based on an estimate of
the spectral density at 0. For details see summary.mcmc
Usage
## S3 method for class 'segratioMCMC'
summary(object, ..., row.index = c(1:10),
var.index = NULL,
marker.index = c(1:8))
Arguments
object |
object of class |
... |
extra options for |
row.index |
which rows to print (Default: first 10) |
var.index |
which mixture model variable to summarise (Default: all) |
marker.index |
which markers to summarise (Default: 1:8) |
Value
An object of class summarySegratioMCMC
is returned which
contains summary statistics for parameters and some markers. For
details see summary.mcmc
Author(s)
Peter Baker p.baker1@uq.edu.au
See Also
summary.mcmc
mcmc
segratioMCMC
readJags
diagnosticsJagsMix
Examples
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)
## Not run:
## fit simple model in one hit and summarise
x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(summary(x.run$mcmc.mixture))
print(summary(x.run$mcmc.mixture, var.index=c(1:3), marker.index=c(1:4)))
## End(Not run)