| circleCub.Gauss {polyCub} | R Documentation |
Integration of the Isotropic Gaussian Density over Circular Domains
Description
This function calculates the integral of the bivariate, isotropic Gaussian
density (i.e., \Sigma = sd^2*diag(2)) over a circular domain
via the cumulative distribution function pchisq of the (non-central)
Chi-Squared distribution (Abramowitz and Stegun, 1972, Formula 26.3.24).
Usage
circleCub.Gauss(center, r, mean, sd)
Arguments
center |
numeric vector of length 2 (center of the circle). |
r |
numeric (radius of the circle). Several radii may be supplied. |
mean |
numeric vector of length 2 (mean of the bivariate Gaussian density). |
sd |
numeric (common standard deviation of the isotropic Gaussian density in both dimensions). |
Value
The integral value (one for each supplied radius).
Note
The non-centrality parameter of the evaluated chi-squared distribution
equals the squared distance between the mean and the
center. If this becomes too large, the result becomes inaccurate, see
pchisq.
References
Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications.
Examples
circleCub.Gauss(center=c(1,2), r=3, mean=c(4,5), sd=6)
## compare with cubature over a polygonal approximation of a circle
## Not run: ## (this example requires gpclib)
disc.poly <- spatstat.geom::disc(radius=3, centre=c(1,2), npoly=32)
polyCub.exact.Gauss(disc.poly, mean=c(4,5), Sigma=6^2*diag(2))
## End(Not run)