control_owl {polle} | R Documentation |
Control arguments for Outcome Weighted Learning
Description
control_owl()
sets the default control arguments
for backwards outcome weighted learning, type = "owl"
.
The arguments are passed directly to DTRlearn2::owl()
if not
specified otherwise.
Usage
control_owl(
policy_vars = NULL,
reuse_scales = TRUE,
res.lasso = TRUE,
loss = "hinge",
kernel = "linear",
augment = FALSE,
c = 2^(-2:2),
sigma = c(0.03, 0.05, 0.07),
s = 2^(-2:2),
m = 4
)
Arguments
policy_vars |
Character vector/string or list of character
vectors/strings. Variable names used to restrict the policy.
The names must be a subset of the history names, see get_history_names().
Not passed to |
reuse_scales |
The history matrix passed to |
res.lasso |
If |
loss |
Loss function. The options are |
kernel |
Type of kernel used by the support vector machine. The
options are |
augment |
If |
c |
Regularization parameter. |
sigma |
Tuning parameter. |
s |
Slope parameter. |
m |
Number of folds for cross-validation of the parameters. |
Value
list of (default) control arguments.