control_earl {polle} | R Documentation |
Control arguments for Efficient Augmentation and Relaxation Learning
Description
control_earl
sets the default control arguments
for efficient augmentation and relaxation learning , type = "earl"
.
The arguments are passed directly to DynTxRegime::earl()
if not
specified otherwise.
Usage
control_earl(
moPropen,
moMain,
moCont,
regime,
iter = 0L,
fSet = NULL,
lambdas = 0.5,
cvFolds = 0L,
surrogate = "hinge",
kernel = "linear",
kparam = NULL,
verbose = 0L
)
Arguments
moPropen |
Propensity model of class "ModelObj", see modelObj::modelObj. |
moMain |
Main effects outcome model of class "ModelObj". |
moCont |
Contrast outcome model of class "ModelObj". |
regime |
An object of class formula specifying the design of the policy/regime. |
iter |
Maximum number of iterations for outcome regression. |
fSet |
A function or NULL defining subset structure. |
lambdas |
Numeric or numeric vector. Penalty parameter. |
cvFolds |
Integer. Number of folds for cross-validation of the parameters. |
surrogate |
The surrogate 0-1 loss function. The options are
|
kernel |
The options are |
kparam |
Numeric. Kernel parameter |
verbose |
Integer. |
Value
list of (default) control arguments.