dpoistweedie {poistweedie} | R Documentation |
The individual probabilities of Y when Y follows a Poisson-Tweedie Distributions
Description
Let X be a non-negative random variable following \mathcal{T}_{P}(\theta , \lambda)
. If a discrete random
variable Y is such that the conditional distribution of Y given X is Poisson with mean
X, then the EDM generated by the distribution of Y is of the Poisson-Tweedie class. For p>=1
individual probabilities of Y\sim\mathcal{P\mathcal{T}_{P}(\theta ,\lambda )}
when Y follows a Poisson-Tweedie Distributions are:
Pr(Y=y)=\int_{0}^{\infty}\frac{e^{-x}x^{y}}{y!}\mathcal{T}_{P}(\theta , \lambda)d(x), y=0,1,
.
For p = 1, it is a Neyman type A distribution; for 1<p<2
, then Poisson-compound Poisson distribution is obtained;
for p = 2,the Poisson-Tweedie model PT_{2}\left(\mu,\lambda\right)
correspond to the negative binomiale law BN\left(
\lambda,\frac{1}{1+\mu}\right)
; and, for p = 3, it is the Sichel or Poisson-inverse
Gaussian distribution (e.g. Willmot, 1987). Also, when p\longrightarrow\infty
,
\lambda=\frac{\mu\times\left( 1-\theta_{0}\right) }{1+\mu}
and the
\lambda=\mu\simeq-\theta_{0}
, the Poisson-Tweedie model
PT_{p}\left( \mu,\lambda\right)
correspond to the poisson law
P_{y}\left( \lambda^{2}\right)
.
Usage
dpoistweedie(y, p, mu, lambda, theta0, log)
densitept1(p, n, mu, lambda, theta0)
densitept2(p, n, mu, lambda, theta0)
dpt1(p, n, mu, lambda, theta0)
dpt1Log(p, n, mu, lambda, theta0)
dpt2(p, n, mu, lambda, theta0)
dpt2Log(p, n, mu, lambda, theta0)
dptp(p, n, mu, lambda, theta0)
dptpLog(p, n, mu, lambda, theta0)
gam1.1(y, lambda)
gam1.2(y, lambda)
imfx0(x0,p,mu,theta0)
moyennePT(p,omega,theta0)
omega(p,mu,theta0)
testOmegaPT(p,n)
Arguments
y |
vector of (non-negative integer) quantiles |
p |
is a real index related to a precise model |
n |
non-negative integer (length of y) |
x0 |
is a real index |
mu |
the mean |
omega |
is a real index. |
lambda |
the dispersion parameter |
theta0 |
the canonical parameter |
log |
logical; if TRUE, probabilities y are given as log(y). |
Details
The Poisson-Tweedie distributions arethe EDMs with a variance of the form
V_{p}^{\mathcal{PT}}\left( \mu\right) =\mu+\mu^{p}\exp\left\{ \left(2-p\right) \Phi_{p}\left( \mu\right) \right\} ,\mu>0
,
where \Phi_{p}\left( \mu\right)
a generally implicit, denotes the inverse of the increansing function
\omega\longrightarrow\frac{d\left\{ \ln IE\left( e^{wy}\right) \right\}}{dw}
. omega(p,mu,theta0) is a function whose permit to determine the value of w.
Value
density (dpoistweedie
),for the given Poisson-Tweedie distribution with parameters
Author(s)
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
References
Dunn, Peter K and Smyth, Gordon K (To appear). Series evaluation of Tweedie exponential dispersion model densities Statistics and Computing.
Dunn, Peter K and Smyth, Gordon K (2001). Tweedie family densities: methods of evaluation. Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark, 2–6 July
Hougaard, P., Lee, M-L.T. and Whitmore, G.A. (1997). Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics 53, 1225–1238
Jorgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society, B, 49, 127–162.
Kokonendji, C.C., Demeetrio, C.G.B. and Dossou-Gbete, S. (2004). Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Demetrio classes. SORT: Statistics and Operations Research Transactions 28 (2), 201–214.
See Also
Examples
## dpoistweedie(y, power, mu,lambda,theta0,log = FALSE)
## Plot dpois() and dpoistweedie() with log=FALSE
layout(matrix(1 :1, 1, 1))
layout.show(2)
power <- exp(10)
mu <-10
lambda <- 10
theta0<--10
lambda1<-100
y <- 0:200
## plot dpoistweedie function with log = FALSE
d1<-dpoistweedie(y,power,mu,lambda,theta0,log = FALSE)
d2<-dpois(y,lambda1,log=FALSE)
erreure<-d1-d2
plot (y,d1,col='blue', type='h',xlab="y
avec y=0:200, power=exp(30),mu=10, lambda=10,
theta0=-10, lambda1=100", ylab="densite P(100)",
main = "dpoistweedie(*,col='blue' log=FALSE)
et dpois(*,col='red' log=FALSE)")
lines(y,d2,type ="p",col='red',lwd=2)
sum(abs(erreure))
## Plot dnbinom() and dpoistweedie()
layout(matrix(1 :1, 1, 1))
layout.show(2)
power<-2
mu<-10
lambda <- 1
theta0<-0
prob<-1-(mu/(1+mu))
y <- seq(0,50, by =3)
## plot a dpoistweedie function with log=FALSE
d1<-dpoistweedie(y,power,mu,lambda,theta0,log=FALSE)
d2<-dnbinom(y,lambda,prob, log=FALSE)
erreure<-d1-d2
plot (y,d1,col='blue', type='h',xlab="y
avec y=seq(0,50,by=3), power=2,mu=10,
lambda=1, thetao=0", ylab="densite NB(1,1/11)"
,main = "dnpoistweedie(*,col='blue' log=FALSE)
et dnbinom(*,col='red' log=FALSE)")
lines(y,d2,type ="p",col='red',lwd=2)
abs(erreure)