init1.2.jk.j {poisson.glm.mix} | R Documentation |
2nd step of Initialization 1 for the \beta_{jk}
(m=1
) or \beta_{j}
(m=2
) parameterization.
Description
This function is the second step of the two-step small initialization procedure (Initialization 1), used for parameterizations m=1
or m=2
. At first, init1.1.jk.j
is called for each condition j=1,\ldots,J
. The values obtained from the first step are used for initializing the second step of the small EM algorithm for fitting the overall mixture \sum_{k=1}^{K}\pi_j\prod_{j=1}^{J}\prod_{\ell=1}^{L_j}f(y_{ij\ell})
. The selected values from the second step are the ones that initialize the EM algorithm (bjkmodel
or bjmodel
), when K=K_{min}
.
Usage
init1.2.jk.j(reference, response, L, K, m1, m2, t1, t2, model,mnr)
Arguments
reference |
a numeric array of dimension |
response |
a numeric array of count data with dimension |
L |
numeric vector of positive integers containing the partition of the |
K |
positive integer denoting the number of mixture components. |
m1 |
positive integer denoting the number of iterations for each run of |
m2 |
positive integer denoting the number of iterations for each run of |
t1 |
positive integer denoting the number of different runs of |
t2 |
positive integer denoting the number of different runs of |
model |
binary variable denoting the parameterization of the model: 1 for |
mnr |
positive integer denoting the maximum number of Newton-Raphson iterations. |
Value
alpha |
numeric array of dimension |
beta |
numeric array of dimension |
psim |
numeric vector of length |
ll |
numeric, the value of the loglikelihood, computed according to the |
Author(s)
Panagiotis Papastamoulis
See Also
init1.1.jk.j
, bjkmodel
, bjmodel
Examples
############################################################
#1. Example with beta_jk (m=1) model #
############################################################
## load a simulated dataset according to the b_jk model
## number of observations: 500
## design: L=(3,2,1)
data("simulated_data_15_components_bjk")
x <- sim.data[,1]
x <- array(x,dim=c(length(x),1))
y <- sim.data[,-1]
## initialize the parameters for a 2 component mixture
## the number of the overall small runs are t2 = 2
## each one consisting of m2 = 2 iterations of the EM.
## the number of the small runs for the first step small EM
## is t1 = 2, each one consisting of m1 = 2 iterations.
start2 <- init1.2.jk.j(reference=x, response=y, L=c(3,2,1),
K=2, m1=2, m2=2, t1=2, t2=2, model=1,mnr = 3)
summary(start2)
############################################################
#2. Example with beta_j (m=2) model #
############################################################
## initialize the parameters for a 2 component mixture
## the number of the overall small runs are t2 = 3
## each one consisting of m2 = 2 iterations of the EM.
## the number of the small runs for the first step small EM
## is t1 = 2, each one consisting of m1 = 2 iterations.
start2 <- init1.2.jk.j(reference=x, response=y, L=c(3,2,1),
K=2, m1=2, m2=2, t1=2, t2=3, model=2,mnr = 5)
summary(start2)