col_vals_within_spec {pointblank} | R Documentation |
Do values in column data fit within a specification?
Description
The col_vals_within_spec()
validation function, the
expect_col_vals_within_spec()
expectation function, and the
test_col_vals_within_spec()
test function all check whether column values
in a table correspond to a specification (spec
) type (details of which are
available in the Specifications section). The validation function can be
used directly on a data table or with an agent object (technically, a
ptblank_agent
object) whereas the expectation and test functions can only
be used with a data table. Each validation step or expectation will operate
over the number of test units that is equal to the number of rows in the
table (after any preconditions
have been applied).
Usage
col_vals_within_spec(
x,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_within_spec(
object,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)
test_col_vals_within_spec(
object,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)
Arguments
x |
A pointblank agent or a data table
A data frame, tibble ( |
columns |
The target columns
A column-selecting expression, as one would use inside |
spec |
Specification type
A specification string for defining the specification type. Examples are
|
na_pass |
Allow missing values to pass validation
Should any encountered |
preconditions |
Input table modification prior to validation
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using
a leading |
segments |
Expressions for segmenting the target table
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this. |
actions |
Thresholds and actions for different states
A list containing threshold levels so that the validation step can react
accordingly when exceeding the set levels for different states. This is to
be created with the |
step_id |
Manual setting of the step ID value
One or more optional identifiers for the single or multiple validation
steps generated from calling a validation function. The use of step IDs
serves to distinguish validation steps from each other and provide an
opportunity for supplying a more meaningful label compared to the step
index. By default this is |
label |
Optional label for the validation step
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information. |
brief |
Brief description for the validation step
A brief is a short, text-based description for the validation step. If
nothing is provided here then an autobrief is generated by the agent,
using the language provided in |
active |
Is the validation step active?
A logical value indicating whether the validation step should be active. If
the validation function is working with an agent, |
object |
A data table for expectations or tests
A data frame, tibble ( |
threshold |
The failure threshold
A simple failure threshold value for use with the expectation ( |
Value
For the validation function, the return value is either a
ptblank_agent
object or a table object (depending on whether an agent
object or a table was passed to x
). The expectation function invisibly
returns its input but, in the context of testing data, the function is
called primarily for its potential side-effects (e.g., signaling failure).
The test function returns a logical value.
Supported Input Tables
The types of data tables that are officially supported are:
data frames (
data.frame
) and tibbles (tbl_df
)Spark DataFrames (
tbl_spark
)the following database tables (
tbl_dbi
):-
PostgreSQL tables (using the
RPostgres::Postgres()
as driver) -
MySQL tables (with
RMySQL::MySQL()
) -
Microsoft SQL Server tables (via odbc)
-
BigQuery tables (using
bigrquery::bigquery()
) -
DuckDB tables (through
duckdb::duckdb()
) -
SQLite (with
RSQLite::SQLite()
)
-
Other database tables may work to varying degrees but they haven't been formally tested (so be mindful of this when using unsupported backends with pointblank).
Specifications
A specification type must be used with the spec
argument. This is a
character-based keyword that corresponds to the type of data in the specified
columns
. The following keywords can be used:
-
"isbn"
: The International Standard Book Number (ISBN) is a unique numerical identifier for books, pamphletes, educational kits, microforms, and digital/electronic publications. The specification has been formalized in ISO 2108. This keyword can be used to validate 10- or 13-digit ISBNs. -
"VIN"
: A vehicle identification number (VIN) is a unique code (which includes a serial number) used by the automotive industry to identify individual motor vehicles, motorcycles, scooters, and mopeds as stipulated by ISO 3779 and ISO 4030. -
"postal_code[<country_code>]"
: A postal code (also known as postcodes, PIN, or ZIP codes, depending on region) is a series of letters, digits, or both (sometimes including spaces/punctuation) included in a postal address to aid in sorting mail. Because the coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for postal codes in Germany,"postal_code[DE]"
or"postal_code[DEU]"
can be used). The keyword alias"zip"
can be used for US ZIP codes. -
"credit_card"
: A credit card number can be validated and this check works across a large variety of credit type issuers (where card numbers are allocated in accordance with ISO/IEC 7812). Numbers can be of various lengths (typically, they are of 14-19 digits) and the key validation performed here is the usage of the Luhn algorithm. -
"iban[<country_code>]"
: The International Bank Account Number (IBAN) is a system of identifying bank accounts across different countries for the purpose of improving cross-border transactions. IBAN values are validated through conversion to integer values and performing a basic mod-97 operation (as described in ISO 7064) on them. Because the length and coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for IBANs in Germany,"iban[DE]"
or"iban[DEU]"
can be used). -
"swift"
: Business Identifier Codes (also known as SWIFT-BIC, BIC, or SWIFT code) are defined in a standard format as described by ISO 9362. These codes are unique identifiers for both financial and non-financial institutions. SWIFT stands for the Society for Worldwide Interbank Financial Telecommunication. These numbers are used when transferring money between banks, especially important for international wire transfers. -
"phone"
,"email"
,"url"
,"ipv4"
,"ipv6"
,"mac"
: Phone numbers, email addresses, Internet URLs, IPv4 or IPv6 addresses, and MAC addresses can be validated with their respective keywords. These validations use regex-based matching to determine validity.
Only a single spec
value should be provided per function call.
Column Names
columns
may be a single column (as symbol a
or string "a"
) or a vector
of columns (c(a, b, c)
or c("a", "b", "c")
). {tidyselect}
helpers
are also supported, such as contains("date")
and where(is.double)
. If
passing an external vector of columns, it should be wrapped in all_of()
.
When multiple columns are selected by columns
, the result will be an
expansion of validation steps to that number of columns (e.g.,
c(col_a, col_b)
will result in the entry of two validation steps).
Previously, columns could be specified in vars()
. This continues to work,
but c()
offers the same capability and supersedes vars()
in columns
.
Missing Values
This validation function supports special handling of NA
values. The
na_pass
argument will determine whether an NA
value appearing in a test
unit should be counted as a pass or a fail. The default of na_pass = FALSE
means that any NA
s encountered will accumulate failing test units.
Preconditions
Providing expressions as preconditions
means pointblank will preprocess
the target table during interrogation as a preparatory step. It might happen
that a particular validation requires a calculated column, some filtering of
rows, or the addition of columns via a join, etc. Especially for an
agent-based report this can be advantageous since we can develop a large
validation plan with a single target table and make minor adjustments to it,
as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s)
where preconditions
is used. Using dplyr code is suggested here since
the statements can be translated to SQL if necessary (i.e., if the target
table resides in a database). The code is most easily supplied as a one-sided
R formula (using a leading ~
). In the formula representation, the .
serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)
). Alternatively, a function could instead
be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)
).
Segments
By using the segments
argument, it's possible to define a particular
validation with segments (or row slices) of the target table. An optional
expression or set of expressions that serve to segment the target table by
column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and
the RHS contains the column values to segment on.
As an example of the first type of expression that can be used,
vars(a_column)
will segment the target table in however many unique values
are present in the column called a_column
. This is great if every unique
value in a particular column (like different locations, or different dates)
requires it's own repeating validation.
With a formula, we can be more selective with which column values should be
used for segmentation. Using a_column ~ c("group_1", "group_2")
will
attempt to obtain two segments where one is a slice of data where the value
"group_1"
exists in the column named "a_column"
, and, the other is a
slice where "group_2"
exists in the same column. Each group of rows
resolved from the formula will result in a separate validation step.
If there are multiple columns
specified then the potential number of
validation steps will be m
columns multiplied by n
segments resolved.
Segmentation will always occur after preconditions
(i.e., statements that
mutate the target table), if any, are applied. With this type of one-two
combo, it's possible to generate labels for segmentation using an expression
for preconditions
and refer to those labels in segments
without having to
generate a separate version of the target table.
Actions
Often, we will want to specify actions
for the validation. This argument,
present in every validation function, takes a specially-crafted list
object that is best produced by the action_levels()
function. Read that
function's documentation for the lowdown on how to create reactions to
above-threshold failure levels in validation. The basic gist is that you'll
want at least a single threshold level (specified as either the fraction of
test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x
is a table object because,
otherwise, nothing happens. For the col_vals_*()
-type functions, using
action_levels(warn_at = 0.25)
or action_levels(stop_at = 0.25)
are good
choices depending on the situation (the first produces a warning when a
quarter of the total test units fails, the other stop()
s at the same
threshold level).
Labels
label
may be a single string or a character vector that matches the number
of expanded steps. label
also supports {glue}
syntax and exposes the
following dynamic variables contextualized to the current step:
-
"{.step}"
: The validation step name -
"{.col}"
: The current column name -
"{.seg_col}"
: The current segment's column name -
"{.seg_val}"
: The current segment's value/group
The glue context also supports ordinary expressions for further flexibility
(e.g., "{toupper(.step)}"
) as long as they return a length-1 string.
Briefs
Want to describe this validation step in some detail? Keep in mind that this
is only useful if x
is an agent. If that's the case, brief
the agent
with some text that fits. Don't worry if you don't want to do it. The
autobrief protocol is kicked in when brief = NULL
and a simple brief will
then be automatically generated.
YAML
A pointblank agent can be written to YAML with yaml_write()
and the
resulting YAML can be used to regenerate an agent (with yaml_read_agent()
)
or interrogate the target table (via yaml_agent_interrogate()
). When
col_vals_within_spec()
is represented in YAML (under the top-level steps
key as a list member), the syntax closely follows the signature of the
validation function. Here is an example of how a complex call of
col_vals_within_spec()
as a validation step is expressed in R code and in
the corresponding YAML representation.
R statement:
agent %>% col_vals_within_spec( columns = a, spec = "email", na_pass = TRUE, preconditions = ~ . %>% dplyr::filter(b < 10), segments = b ~ c("group_1", "group_2"), actions = action_levels(warn_at = 0.1, stop_at = 0.2), label = "The `col_vals_within_spec()` step.", active = FALSE )
YAML representation:
steps: - col_vals_within_spec: columns: c(a) spec: email na_pass: true preconditions: ~. %>% dplyr::filter(b < 10) segments: b ~ c("group_1", "group_2") actions: warn_fraction: 0.1 stop_fraction: 0.2 label: The `col_vals_within_spec()` step. active: false
In practice, both of these will often be shorter as only the columns
and
spec
arguments require values. Arguments with default values won't be
written to YAML when using yaml_write()
(though it is acceptable to include
them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any
writing to disk by using the yaml_agent_string()
function.
Examples
The specifications
dataset in the package has columns of character data
that correspond to each of the specifications that can be tested. The
following examples will validate that the email_addresses
column has 5
correct values (this is true if we get a subset of the data: the first five
rows).
spec_slice <- specifications[1:5, ] spec_slice #> # A tibble: 5 x 12 #> isbn_numbers vin_numbers zip_codes credit_card_numbers iban_austria #> <chr> <chr> <chr> <chr> <chr> #> 1 978 1 85715 201 2 4UZAANDH85CV12329 99553 340000000000009 AT582774098~ #> 2 978-1-84159-362-3 JM1BL1S59A1134659 36264 378734493671000 AT220332087~ #> 3 978 1 84159 329 6 1GCEK14R3WZ274764 71660 6703444444444449 AT328650112~ #> 4 978 1 85715 202 9 2B7JB21Y0XK524370 85225 6703000000000000003 AT193357281~ #> 5 978 1 85715 198 5 4UZAANDH85CV12329 90309 4035501000000008 AT535755326~ #> # i 7 more variables: swift_numbers <chr>, phone_numbers <chr>, #> # email_addresses <chr>, urls <chr>, ipv4_addresses <chr>, #> # ipv6_addresses <chr>, mac_addresses <chr>
A: Using an agent
with validation functions and then interrogate()
Validate that all values in the column email_addresses
are correct. We'll
determine if this validation has any failing test units (there are 5 test
units, one for each row).
agent <- create_agent(tbl = spec_slice) %>% col_vals_within_spec( columns = email_addresses, spec = "email" ) %>% interrogate()
Printing the agent
in the console shows the validation report in the
Viewer. Here is an excerpt of validation report, showing the single entry
that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent
)
This way of using validation functions acts as a data filter. Data is passed
through but should stop()
if there is a single test unit failing. The
behavior of side effects can be customized with the actions
option.
spec_slice %>% col_vals_within_spec( columns = email_addresses, spec = "email" ) %>% dplyr::select(email_addresses) #> # A tibble: 5 x 1 #> email_addresses #> <chr> #> 1 test@test.com #> 2 mail+mail@example.com #> 3 mail.email@e.test.com #> 4 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ@letters-in-local.org #> 5 01234567890@numbers-in-local.net
C: Using the expectation function
With the expect_*()
form, we would typically perform one validation at a
time. This is primarily used in testthat tests.
expect_col_vals_within_spec( spec_slice, columns = email_addresses, spec = "email" )
D: Using the test function
With the test_*()
form, we should get a single logical value returned to
us.
spec_slice %>% test_col_vals_within_spec( columns = email_addresses, spec = "email" ) #> [1] TRUE
Function ID
2-18
See Also
Other validation functions:
col_count_match()
,
col_exists()
,
col_is_character()
,
col_is_date()
,
col_is_factor()
,
col_is_integer()
,
col_is_logical()
,
col_is_numeric()
,
col_is_posix()
,
col_schema_match()
,
col_vals_between()
,
col_vals_decreasing()
,
col_vals_equal()
,
col_vals_expr()
,
col_vals_gt()
,
col_vals_gte()
,
col_vals_in_set()
,
col_vals_increasing()
,
col_vals_lt()
,
col_vals_lte()
,
col_vals_make_set()
,
col_vals_make_subset()
,
col_vals_not_between()
,
col_vals_not_equal()
,
col_vals_not_in_set()
,
col_vals_not_null()
,
col_vals_null()
,
col_vals_regex()
,
conjointly()
,
row_count_match()
,
rows_complete()
,
rows_distinct()
,
serially()
,
specially()
,
tbl_match()