MLE for Poisson lognormal distribution {poilog} | R Documentation |
Maximum Likelihood Estimation for Poisson Lognormal Distribution
Description
poilogMLE
fits the Poisson lognormal distribution to data and estimates
parameters mean mu
and standard deviation sig
in the lognormal distribution
Usage
poilogMLE(n, startVals = c(mu=1, sig=2),
nboot = 0, zTrunc = TRUE,
method = "BFGS", control = list(maxit=1000))
Arguments
n |
A vector of counts |
startVals |
Starting values of parameters, see details |
nboot |
Number of parametric bootstraps, defaults to zero |
zTrunc |
Zero-truncated distribution, defaults to TRUE |
method |
Method to use during optimization, see details |
control |
A list of control parameters for the optimization routine, see details |
Details
The function estimates parameters mean mu
and standard deviation sig
.
In cases of incomplete sampling the estimate of mu
will be confounded with the sampling
intensity (see rpoilog
). Assuming sampling intensity \nu
,
the estimates of the mean is \code{mu}+\ln(\nu)
. Parameter sig
can be estimated without
any knowledge of sampling intensity.
The parameters must be given starting values for the optimization procedure (default starting values are
used if starting values are not specified in the function call).
The function uses the optimization procedures in optim
to obtain the maximum likelihood estimate.
The method
and control
arguments are passed to optim
, see the help page for this
function for additional methods and control parameters.
A zero-truncated distribution (see dpoilog
) is assumed by default (zTrunc = TRUE
).
In cases where the number of zeros is known the zTrunc
argument should be set to FALSE
.
The approximate fraction of species revealed by the sample is 1-q(0;\code{mu},\code{sig})
.
Parametric bootstrapping is done by simulating new sets of observations using the estimated parameters
(see rbipoilog
).
Value
par |
Maximum likelihood estimates of the parameters |
p |
Approximate fraction of species revealed by the sample |
logLval |
Log likelihood of the data given the estimated parameters |
gof |
Goodness of fit measure obtained by checking the rank of logLval against logLval's obtained during the bootstrap procedure, (gof<0.05) or (gof>0.95) indicates lack of fit |
boot |
A data frame containing the bootstrap replicates of parameters and logLval |
Author(s)
Vidar Grotan vidar.grotan@ntnu.no, Steinar Engen
References
Bulmer, M. G. 1974. On fitting the Poisson lognormal distribution to species abundance data. Biometrics 30, 651-660.
Engen, S., R. Lande, T. Walla and P. J. DeVries. 2002. Analyzing spatial structure of communities using the two-dimensional
Poisson lognormal species abundance model. American Naturalist 160, 60-73.
See Also
Examples
### simulate observations
n <- rpoilog(S=80,mu=1,sig=2)
### obtain estimates of parameters
est <- poilogMLE(n)
### similar, but now with bootstrapping ###
## Not run: est <- poilogMLE(n,nboot=10)
### change start values and request tracing information
### from optimization procedure
est <- poilogMLE(n,startVals=c(2,3),
control=list(maxit=1000,trace=1, REPORT=1))