EM-like algorithms {pmclust} | R Documentation |
EM-like Steps for GBD
Description
The EM-like algorithm for model-based clustering of finite mixture Gaussian models with unstructured dispersions.
Usage
em.step(PARAM.org)
aecm.step(PARAM.org)
apecm.step(PARAM.org)
apecma.step(PARAM.org)
kmeans.step(PARAM.org)
Arguments
PARAM.org |
an original set of parameters generated
by |
Details
A global variable called X.spmd
should exist in the
.pmclustEnv
environment, usually the working environment. The X.spmd
is the data matrix to be clustered, and this matrix has a dimension
N.spmd
by p
.
A PARAM.org
will be a local variable inside all EM-linke functions
em.step
, aecm.step
,
apecm.step
, apecma.step
, and
kmeans.step
,
This variable is a list containing all parameters related to models.
This function also updates in the parameters by the EM-like algorithms, and
return the convergent results. The details of list elements are initially
generated by set.global
.
Value
A convergent results will be returned the other list variable
containing all new parameters which represent the components of models.
See the help page of PARAM
or PARAM.org
for details.
Author(s)
Wei-Chen Chen wccsnow@gmail.com and George Ostrouchov.
References
Programming with Big Data in R Website: https://pbdr.org/
Chen, W.-C. and Maitra, R. (2011) “Model-based clustering of regression time series data via APECM – an AECM algorithm sung to an even faster beat”, Statistical Analysis and Data Mining, 4, 567-578.
Chen, W.-C., Ostrouchov, G., Pugmire, D., Prabhat, M., and Wehner, M. (2013) “A Parallel EM Algorithm for Model-Based Clustering with Application to Explore Large Spatio-Temporal Data”, Technometrics, (revision).
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) “Maximum Likelihood from Incomplete Data via the EM Algorithm”, Journal of the Royal Statistical Society Series B, 39, 1-38.
Lloyd., S. P. (1982) “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 28, 129-137.
Meng, X.-L. and Van Dyk, D. (1997) “The EM Algorithm.an Old Folk-song Sung to a Fast New Tune”, Journal of the Royal Statistical Society Series B, 59, 511-567.
See Also
Examples
## Not run:
# Save code in a file "demo.r" and run in 4 processors by
# > mpiexec -np 4 Rscript demo.r
### Setup environment.
library(pmclust, quiet = TRUE)
comm.set.seed(123)
### Generate an example data.
N.allspmds <- rep(5000, comm.size())
N.spmd <- 5000
N.K.spmd <- c(2000, 3000)
N <- 5000 * comm.size()
p <- 2
K <- 2
data.spmd <- generate.basic(N.allspmds, N.spmd, N.K.spmd, N, p, K)
X.spmd <- data.spmd$X.spmd
### Run clustering.
PARAM.org <- set.global(K = K) # Set global storages.
# PARAM.org <- initial.em(PARAM.org) # One initial.
PARAM.org <- initial.RndEM(PARAM.org) # Ten initials by default.
PARAM.new <- apecma.step(PARAM.org) # Run APECMa.
em.update.class() # Get classification.
### Get results.
N.CLASS <- get.N.CLASS(K)
comm.cat("# of class:", N.CLASS, "\n")
### Quit.
finalize()
## End(Not run)