cumbasehaz {plsmselect} | R Documentation |
Cumulative Baseline Hazard of a gamlasso object
Description
This is only used when with family="cox"
Usage
cumbasehaz(object)
Arguments
object |
fitted model object of the class |
Value
This function returns the cumulative baseline hazard function of
a gamlasso
object if fitted using family = "cox"
. More
specifically, cumbasehaz(object) is the cumulative baseline hazard function
corresponding to the linear predictor predict(object).
See Also
Examples
library(plsmselect)
data(simData)
## Fit Cox gamlasso model using the formula approach:
## (L1-penalty both on X terms and smooth terms (bs="ts"))
simData$X = model.matrix(~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10, data=simData)[,-1]
cfit = gamlasso(time ~ X +
s(z1, bs="ts", k=5) +
s(z2, bs="ts", k=5) +
s(z3, bs="ts", k=5) +
s(z4, bs="ts", k=5),
data = simData,
family = "cox",
weights="status",
seed=1)
## Obtain and plot predicted cumulative baseline hazard:
H0.pred <- cumbasehaz(cfit)
time.seq <- seq(0, 60, by=1)
plot(time.seq, H0.pred(time.seq), type="l", ylab="Predicted Cumulative Baseline Hazard")
## Obtain predicted survial probabilities at month 1 and 2 (days 30 & 60):
lp <- predict(cfit) # estimated linear predictor
S.pred <- cbind(exp(-H0.pred(30)*exp(lp)), exp(-H0.pred(60)*exp(lp)))
## Obtain predicted survival at month 1 and 2 directly:
S.pred2 <- predict(cfit, type="response", new.event.times=c(30,60))
## Confirm that the two arrived at the same values:
all.equal(S.pred, S.pred2)
# See ?gamlasso for an example fitting a gaussian response model
# See ?summary.gamlasso for an example fitting a binomial response model
# See ?predict.gamlasso for an example fitting a poisson response model
[Package plsmselect version 0.2.0 Index]