mgsim {plsgenomics} | R Documentation |
GSIM for categorical data
Description
The function mgsim
performs prediction using Lambert-Lacroix and Peyre's MGSIM algorithm.
Usage
mgsim(Ytrain,Xtrain,Lambda,h,Xtest=NULL,NbIterMax=50)
Arguments
Xtrain |
a (ntrain x p) data matrix of predictors. |
Ytrain |
a ntrain vector of responses. |
Xtest |
a (ntest x p) matrix containing the predictors for the test data
set. |
Lambda |
a positive real value. |
h |
a strictly positive real value. |
NbIterMax |
a positive integer. |
Details
The columns of the data matrices Xtrain
and Xtest
may not be standardized,
since standardizing is performed by the function mgsim
as a preliminary step
before the algorithm is run.
The procedure described in Lambert-Lacroix and Peyre (2005) is used to estimate
the c projection directions and the coefficients of the parametric fit obtained
after projecting predictor variables onto the estimated directions. When Xtest
is not equal to NULL, the procedure predicts the labels for these new predictor variables.
Value
A list with the following components:
Ytest |
the ntest vector containing the predicted labels for the observations from
|
beta |
the (p x c) matrix containing the c estimated projection directions. |
Coefficients |
the (2 x c) matrix containing the coefficients of the parametric fit obtained after projecting predictor variables onto these estimated directions. |
DeletedCol |
the vector containing the column number of |
Cvg |
the 0-1 value indicating convergence of the algorithm (1 for convergence, 0 otherwise). |
Author(s)
Sophie Lambert-Lacroix (http://membres-timc.imag.fr/Sophie.Lambert/) and Julie Peyre (https://membres-ljk.imag.fr/Julie.Peyre/).
References
S. Lambert-Lacroix, J. Peyre . (2006) Local likelyhood regression in generalized linear single-index models with applications to microarrays data. Computational Statistics and Data Analysis, vol 51, n 3, 2091-2113.
See Also
Examples
# load plsgenomics library
library(plsgenomics)
# load SRBCT data
data(SRBCT)
IndexLearn <- c(sample(which(SRBCT$Y==1),10),sample(which(SRBCT$Y==2),4),
sample(which(SRBCT$Y==3),7),sample(which(SRBCT$Y==4),9))
# perform prediction by MGSIM
res <- mgsim(Ytrain=SRBCT$Y[IndexLearn],Xtrain=SRBCT$X[IndexLearn,],Lambda=0.001,h=19,
Xtest=SRBCT$X[-IndexLearn,])
res$Cvg
sum(res$Ytest!=SRBCT$Y[-IndexLearn])
# prediction for another sample
Xnew <- SRBCT$X[83,]
# projection of Xnew onto the c estimated direction
Xproj <- Xnew %*% res$beta
# Compute the linear predictor for each classes expect class 1
eta <- diag(cbind(rep(1,3),t(Xproj)) %*% res$Coefficients)
Ypred <- which.max(c(0,eta))
Ypred
SRBCT$Y[83]