gsim {plsgenomics} | R Documentation |
GSIM for binary data
Description
The function gsim
performs prediction using Lambert-Lacroix and Peyre's GSIM algorithm.
Usage
gsim(Xtrain, Ytrain, Xtest=NULL, Lambda, hA, hB=NULL, NbIterMax=50)
Arguments
Xtrain |
a (ntrain x p) data matrix of predictors. |
Ytrain |
a ntrain vector of responses. |
Xtest |
a (ntest x p) matrix containing the predictors for the test data
set. |
Lambda |
a positive real value. |
hA |
a strictly positive real value. |
hB |
a strictly positive real value. |
NbIterMax |
a positive integer. |
Details
The columns of the data matrices Xtrain
and Xtest
may not be standardized,
since standardizing is performed by the function gsim
as a preliminary step
before the algorithm is run.
The procedure described in Lambert-Lacroix and Peyre (2005) is used to estimate
the projection direction beta. When Xtest
is not equal to NULL, the procedure predicts the labels for these new predictor variables.
Value
A list with the following components:
Ytest |
the ntest vector containing the predicted labels for the observations from
|
beta |
the p vector giving the projection direction estimated. |
hB |
the value of hB used in step B of GSIM (value given by the user or estimated by plug-in if the argument value was equal to NULL) |
DeletedCol |
the vector containing the column number of |
Cvg |
the 0-1 value indicating convergence of the algorithm (1 for convergence, 0 otherwise). |
Author(s)
Sophie Lambert-Lacroix (http://membres-timc.imag.fr/Sophie.Lambert/) and Julie Peyre (https://membres-ljk.imag.fr/Julie.Peyre/).
References
S. Lambert-Lacroix, J. Peyre . (2006) Local likelyhood regression in generalized linear single-index models with applications to microarrays data. Computational Statistics and Data Analysis, vol 51, n 3, 2091-2113.
See Also
Examples
# load plsgenomics library
library(plsgenomics)
# load Colon data
data(Colon)
IndexLearn <- c(sample(which(Colon$Y==2),12),sample(which(Colon$Y==1),8))
Xtrain <- Colon$X[IndexLearn,]
Ytrain <- Colon$Y[IndexLearn]
Xtest <- Colon$X[-IndexLearn,]
# preprocess data
resP <- preprocess(Xtrain= Xtrain, Xtest=Xtest,Threshold = c(100,16000),Filtering=c(5,500),
log10.scale=TRUE,row.stand=TRUE)
# perform prediction by GSIM
res <- gsim(Xtrain=resP$pXtrain,Ytrain= Ytrain,Xtest=resP$pXtest,Lambda=10,hA=50,hB=NULL)
res$Cvg
sum(res$Ytest!=Colon$Y[-IndexLearn])