nipals {plsdepot} | R Documentation |
NIPALS: Non-linear Iterative Partial Least Squares
Description
Principal Components Analysis with NIPALS algorithm
Usage
nipals(Data, comps = 2, scaled = TRUE)
Arguments
Data |
A numeric matrix or data frame (which may contain missing values). |
comps |
Number of components to be calculated (by default 2) |
scaled |
A logical value indicating whether to scale
the data ( |
Details
The function nipals
performs Principal Components
Analysis of a data matrix that may contain missing
values.
Value
An object of class "nipals"
, basically a list with
the following elements:
When the analyzed data contain missing values, the help
interpretation tools (e.g. cor.xt, disto, contrib,
cos, dmod
) may not be meaningful, that is to say, some
of the results may not be coherent.
values |
The pseudo eigenvalues |
scores |
The extracted scores (i.e. components) |
loadings |
The loadings |
cor.xt |
Correlations between the variables and the scores |
disto |
Squared distance of the observations to the origin |
contrib |
Contributions of the observations (rows) |
cos |
Squared cosinus |
dmod |
Distance to the Model |
Author(s)
Gaston Sanchez
References
Tenenhaus, M. (1998) La Regression PLS. Theorie et Pratique. Paris: Editions TECHNIP.
Tenenhaus, M. (2007) Statistique. Methodes pour decrire, expliquer et prevoir. Paris: Dunod.
See Also
Examples
## Not run:
# load datasets carscomplete and carsmissing
data(carscomplete) # complete data
data(carsmissing) # missing values
# apply nipals
my_nipals1 = nipals(carscomplete)
my_nipals2 = nipals(carsmissing)
# plot variables (circle of correlations)
plot(my_nipals1, what="variables", main="Complete data")
plot(my_nipals2, what="variables", main="Missing data")
# plot observations with labels
plot(my_nipals1, what="observations", show.names=TRUE, main="Complete data")
plot(my_nipals2, what="observations", show.names=TRUE, main="Missing data")
# compare results between my_nipals1 and my_nipals2
plot(my_nipals1$scores[,1], my_nipals2$scores[,1], type="n")
title("Scores comparison: my_nipals1 -vs- my_nipals2", cex.main=0.9)
abline(a=0, b=1, col="gray85", lwd=2)
points(my_nipals1$scores[,1], my_nipals2$scores[,1], pch=21,
col="#5592e3", bg = "#5b9cf277", lwd=1.5)
## End(Not run)