| nipals {plsdepot} | R Documentation | 
NIPALS: Non-linear Iterative Partial Least Squares
Description
Principal Components Analysis with NIPALS algorithm
Usage
  nipals(Data, comps = 2, scaled = TRUE)
Arguments
Data | 
 A numeric matrix or data frame (which may contain missing values).  | 
comps | 
 Number of components to be calculated (by default 2)  | 
scaled | 
 A logical value indicating whether to scale
the data (  | 
Details
The function nipals performs Principal Components
Analysis of a data matrix that may contain missing
values.
Value
An object of class "nipals", basically a list with
the following elements:
When the analyzed data contain missing values, the help
interpretation tools (e.g. cor.xt, disto, contrib,
  cos, dmod) may not be meaningful, that is to say, some
of the results may not be coherent.
values | 
 The pseudo eigenvalues  | 
scores | 
 The extracted scores (i.e. components)  | 
loadings | 
 The loadings  | 
cor.xt | 
 Correlations between the variables and the scores  | 
disto | 
 Squared distance of the observations to the origin  | 
contrib | 
 Contributions of the observations (rows)  | 
cos | 
 Squared cosinus  | 
dmod | 
 Distance to the Model  | 
Author(s)
Gaston Sanchez
References
Tenenhaus, M. (1998) La Regression PLS. Theorie et Pratique. Paris: Editions TECHNIP.
Tenenhaus, M. (2007) Statistique. Methodes pour decrire, expliquer et prevoir. Paris: Dunod.
See Also
Examples
## Not run: 
 # load datasets carscomplete and carsmissing
 data(carscomplete) # complete data
 data(carsmissing)  # missing values
 # apply nipals
 my_nipals1 = nipals(carscomplete)
 my_nipals2 = nipals(carsmissing)
 # plot variables (circle of correlations)
 plot(my_nipals1, what="variables", main="Complete data")
 plot(my_nipals2, what="variables", main="Missing data")
 # plot observations with labels
 plot(my_nipals1, what="observations", show.names=TRUE, main="Complete data")
 plot(my_nipals2, what="observations", show.names=TRUE, main="Missing data")
 # compare results between my_nipals1 and my_nipals2
 plot(my_nipals1$scores[,1], my_nipals2$scores[,1], type="n")
 title("Scores comparison: my_nipals1  -vs-  my_nipals2", cex.main=0.9)
 abline(a=0, b=1, col="gray85", lwd=2)
 points(my_nipals1$scores[,1], my_nipals2$scores[,1], pch=21,
        col="#5592e3", bg = "#5b9cf277", lwd=1.5)
 
## End(Not run)