| micro.censure {plsRcox} | R Documentation |
Microsat features and survival times
Description
This dataset provides Microsat specifications and survival times.
Format
A data frame with 117 observations on the following 43 variables.
- numpat
a factor with levels
B1006B1017B1028B1031B1046B1059B1068B1071B1102B1115B1124B1139B1157B1161B1164B1188B1190B1192B1203B1211B1221B1225B1226B1227B1237B1251B1258B1266B1271B1282B1284B1285B1286B1287B1290B1292B1298B1302B1304B1310B1319B1327B1353B1357B1363B1368B1372B1373B1379B1388B1392B1397B1403B1418B1421t1B1421t2B1448B1451B1455B1460B1462B1466B1469B1493B1500B1502B1519B1523B1529B1530B1544B1548B500B532B550B558B563B582B605B609B634B652B667B679B701B722B728B731B736B739B744B766B771B777B788B800B836B838B841B848B871B873B883B889B912B924B925B927B938B952B954B955B968B972B976B982B984- D18S61
a numeric vector
- D17S794
a numeric vector
- D13S173
a numeric vector
- D20S107
a numeric vector
- TP53
a numeric vector
- D9S171
a numeric vector
- D8S264
a numeric vector
- D5S346
a numeric vector
- D22S928
a numeric vector
- D18S53
a numeric vector
- D1S225
a numeric vector
- D3S1282
a numeric vector
- D15S127
a numeric vector
- D1S305
a numeric vector
- D1S207
a numeric vector
- D2S138
a numeric vector
- D16S422
a numeric vector
- D9S179
a numeric vector
- D10S191
a numeric vector
- D4S394
a numeric vector
- D1S197
a numeric vector
- D6S264
a numeric vector
- D14S65
a numeric vector
- D17S790
a numeric vector
- D5S430
a numeric vector
- D3S1283
a numeric vector
- D4S414
a numeric vector
- D8S283
a numeric vector
- D11S916
a numeric vector
- D2S159
a numeric vector
- D16S408
a numeric vector
- D6S275
a numeric vector
- D10S192
a numeric vector
- sexe
a numeric vector
- Agediag
a numeric vector
- Siege
a numeric vector
- T
a numeric vector
- N
a numeric vector
- M
a numeric vector
- STADE
a factor with levels
01234- survyear
a numeric vector
- DC
a numeric vector
Source
Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without preoperative treatment, #' Benoît Romain, Agnès Neuville, Nicolas Meyer, Cécile Brigand, Serge Rohr, Anne Schneider, Marie-Pierre Gaub and Dominique Guenot, BMC Cancer 2010, 10:561, doi:10.1186/1471-2407-10-561.
References
plsRcox, Cox-Models in a high dimensional setting in R, Frederic
Bertrand, Philippe Bastien, Nicolas Meyer and Myriam Maumy-Bertrand (2014).
Proceedings of User2014!, Los Angeles, page 152.
Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics, 31(3):397-404, doi:10.1093/bioinformatics/btu660.
Examples
data(micro.censure)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]
Y_test_micro <- micro.censure$survyear[81:117]
C_test_micro <- micro.censure$DC[81:117]
rm(Y_train_micro,C_train_micro,Y_test_micro,C_test_micro)