xpar {plotMCMC}R Documentation

MCMC Results for Model Parameters

Description

Markov chain Monte Carlo results from stock assessment of cod (Gadus morhua) in Icelandic waters, showing estimated model parameters.

Usage

xpar

Format

Data frame containing 1000 rows and 8 columns:

R0 average virgin recruitment
Rinit initial recruitment scaler
uinit initial harvest rate
cSleft left-side slope of commercial selectivity curve
cSfull age at full commercial selectivity
sSleft left-side slope of survey selectivity curve
sSfull age at full survey selectivity
logq log-transformed survey catchability

Details

Each column contains the results of 1 million MCMC iterations, after thinning to every 1000th iteration.

The MCMC analysis started at the best fit, so no burn-in period was discarded.

Note

This data frame is a subset of the xmcmc list from the scape package, which contains further documentation about the data and model. More specifically, xpar <- xmcmc$P.

The MCMC analysis was run using the AD Model Builder software (http://www.admb-project.org/).

References

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., Nielsen, A. and Sibert, J. (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27, 233–249.

Magnusson, A., Punt, A. E. and Hilborn, R. (2013) Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC. Fish and Fisheries, 14, 325–342.

See Also

xpar (parameters), xrec (recruitment), xbio (biomass), and xpro (projected future biomass) are MCMC data frames to explore.

plotMCMC-package gives an overview of the package.

Examples

plotTrace(xpar, xlab="Iterations", ylab="Parameter value",
          layout=c(2,4))
plotTrace(xpar$R0, axes=TRUE, div=1000)

plotAuto(xpar$R0)
plotAuto(xpar$R0, thin=10)
plotAuto(xpar, lag.max=50, ann=FALSE, axes=FALSE)

plotCumu(xpar$R0, main="R0")
plotCumu(xpar$cSfull, main="cSfull")
plotCumu(xpar, probs=c(0.25,0.75), ann=FALSE, axes=FALSE)

plotSplom(xpar, pch=".")

plotDens(xpar, xlab="Parameter value", ylab="Posterior density\n")

[Package plotMCMC version 2.0.1 Index]