plotCumu {plotMCMC} | R Documentation |
Plot MCMC Cumulative Quantiles
Description
Plot Markov chain Monte Carlo cumulative quantiles. This is a diagnostic plot for deciding whether the chain has converged.
Usage
plotCumu(mcmc, probs=c(0.025,0.975), div=1, log=FALSE, base=10,
main=NULL, xlab="Iterations", ylab="Value", lty.median=1,
lwd.median=2, col.median="black", lty.outer=2, lwd.outer=1,
col.outer="black", ...)
Arguments
mcmc |
MCMC chain(s) as a vector, data frame or |
probs |
vector of outer quantiles to draw, besides the median. |
div |
denominator to shorten values on the y axis. |
log |
whether values should be log-transformed. |
base |
logarithm base. |
main |
main title. |
xlab |
x-axis label. |
ylab |
y-axis label. |
lty.median |
line type of median. |
lwd.median |
line width of median. |
col.median |
color of median. |
lty.outer |
line type of outer quantiles. |
lwd.outer |
line width of outer quantiles. |
col.outer |
color of outer quantiles. |
... |
passed to |
Value
Null, but a plot is drawn on the current graphics device.
Note
The Args
function from the gdata package is recommended
for reviewing the arguments, instead of args
.
See Also
cumuplot
is the underlying plotting function, and
quantile
is called iteratively to calculate the
cumulative quantiles.
plotTrace
, plotAuto
, plotCumu
, and
plotSplom
are diagnostic plots.
plotDens
and plotQuant
are posterior
plots.
plotMCMC-package
gives an overview of the package.
Examples
plotCumu(xpar$R0, main="R0")
plotCumu(xpar$cSfull, main="cSfull")
plotCumu(xpar, probs=c(0.25,0.75), ann=FALSE, axes=FALSE)