| plotCumu {plotMCMC} | R Documentation |
Plot MCMC Cumulative Quantiles
Description
Plot Markov chain Monte Carlo cumulative quantiles. This is a diagnostic plot for deciding whether the chain has converged.
Usage
plotCumu(mcmc, probs=c(0.025,0.975), div=1, log=FALSE, base=10,
main=NULL, xlab="Iterations", ylab="Value", lty.median=1,
lwd.median=2, col.median="black", lty.outer=2, lwd.outer=1,
col.outer="black", ...)
Arguments
mcmc |
MCMC chain(s) as a vector, data frame or |
probs |
vector of outer quantiles to draw, besides the median. |
div |
denominator to shorten values on the y axis. |
log |
whether values should be log-transformed. |
base |
logarithm base. |
main |
main title. |
xlab |
x-axis label. |
ylab |
y-axis label. |
lty.median |
line type of median. |
lwd.median |
line width of median. |
col.median |
color of median. |
lty.outer |
line type of outer quantiles. |
lwd.outer |
line width of outer quantiles. |
col.outer |
color of outer quantiles. |
... |
passed to |
Value
Null, but a plot is drawn on the current graphics device.
Note
The Args function from the gdata package is recommended
for reviewing the arguments, instead of args.
See Also
cumuplot is the underlying plotting function, and
quantile is called iteratively to calculate the
cumulative quantiles.
plotTrace, plotAuto, plotCumu, and
plotSplom are diagnostic plots.
plotDens and plotQuant are posterior
plots.
plotMCMC-package gives an overview of the package.
Examples
plotCumu(xpar$R0, main="R0")
plotCumu(xpar$cSfull, main="cSfull")
plotCumu(xpar, probs=c(0.25,0.75), ann=FALSE, axes=FALSE)