pairwise_interface {plotHMM} | R Documentation |
Pairwise algorithm
Description
Efficient implementation of pairwise algorithm in C++ code, for N data and S states.
Usage
pairwise_interface(
log_emission_mat, log_transition_mat, log_alpha_mat, log_beta_mat)
Arguments
log_emission_mat , log_alpha_mat , log_beta_mat |
N x S numeric matrices of log likelihood. |
log_transition_mat |
S x S numeric matrix; log_transition_mat[i,j] is the log probability of going from state i to state j. |
Value
S x S x N-1 numeric array of log likelihood.
Author(s)
Toby Dylan Hocking
Examples
##simulated data.
seg.mean.vec <- c(2, 0, -1, 0)
data.mean.vec <- rep(seg.mean.vec, each=10)
set.seed(1)
N.data <- length(data.mean.vec)
y.vec <- rnorm(N.data, data.mean.vec)
##model.
n.states <- 3
log.A.mat <- log(matrix(1/n.states, n.states, n.states))
state.mean.vec <- c(-1, 0, 1)*0.1
sd.param <- 1
log.emission.mat <- dnorm(
y.vec,
matrix(state.mean.vec, N.data, n.states, byrow=TRUE),
sd.param,
log=TRUE)
log.pi.vec <- log(rep(1/n.states, n.states))
f.list <- plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec)
b.mat <- plotHMM::backward_interface(log.emission.mat, log.A.mat)
log.gamma.mat <- plotHMM::multiply_interface(f.list$log_alpha, b.mat)
prob.mat <- exp(log.gamma.mat)
plotHMM::pairwise_interface(log.emission.mat, log.A.mat, f.list$log_alpha, b.mat)
[Package plotHMM version 2023.8.28 Index]