plot_moderator_search {plotBart} | R Documentation |
Plot a single regression tree of covariates on ICATEs
Description
Plot a single regression tree for exploratory heterogeneous effects. Fit single regression tree on bartc() ICATEs to produce variable importance plot. This plot is useful for identifying potential moderating variables. Tree depth may be set to depths 1, 2 or 3. Terminal nodes signal the Conditional Average Treatment effect within levels of moderation variables. Trees with different values across terminal nodes suggest strong treatment effect moderation.
Usage
plot_moderator_search(.model, max_depth = c(2, 1, 3))
Arguments
.model |
a model produced by 'bartCause::bartc()' |
max_depth |
one of c(1, 2, 3). Maximum number of node levels within the tree. 2 is recommended |
Value
ggplot object
Author(s)
George Perrett, Joseph Marlo
Examples
data(lalonde)
confounders <- c('age', 'educ', 'black', 'hisp', 'married', 'nodegr')
model_results <- bartCause::bartc(
response = lalonde[['re78']],
treatment = lalonde[['treat']],
confounders = as.matrix(lalonde[, confounders]),
estimand = 'ate',
commonSuprule = 'none'
)
plot_moderator_search(model_results)
[Package plotBart version 0.1.7 Index]