plot_PATE {plotBart}R Documentation

Plot histogram or density of Population Average Treatment Effect

Description

Plot shows the Population Average Treatment Effect which is derived from the posterior predictive distribution of the difference between yz=1,Xy | z=1, X and yz=0,Xy | z=0, X. Mean of PATE will resemble CATE and SATE but PATE will account for more uncertainty and is recommended for informing inferences on the average treatment effect.

Usage

plot_PATE(
  .model,
  type = c("histogram", "density"),
  ci_80 = FALSE,
  ci_95 = FALSE,
  reference = NULL,
  .mean = FALSE,
  .median = FALSE
)

Arguments

.model

a model produced by 'bartCause::bartc()'

type

histogram or density

ci_80

TRUE/FALSE. Show the 80% credible interval?

ci_95

TRUE/FALSE. Show the 95% credible interval?

reference

numeric. Show a vertical reference line at this value

.mean

TRUE/FALSE. Show the mean reference line

.median

TRUE/FALSE. Show the median reference line

Value

ggplot object

Author(s)

George Perrett, Joseph Marlo

Examples


data(lalonde)
confounders <- c('age', 'educ', 'black', 'hisp', 'married', 'nodegr')
model_results <- bartCause::bartc(
 response = lalonde[['re78']],
 treatment = lalonde[['treat']],
 confounders = as.matrix(lalonde[, confounders]),
 estimand = 'ate',
 commonSup.rule = 'none'
)
plot_PATE(model_results)


[Package plotBart version 0.1.7 Index]