simulpln {pln}R Documentation

Simulate data from polytomous logit-normit (graded logistic) model

Description

Simulate data from polytomous logit-normit (graded logistic) model

Usage

simulpln(n, nitem, ncat, alphas, betas)

Arguments

n

Number of responses to generate.

nitem

Number of items.

ncat

Number of categories for the items.

alphas

A vector of length nitem×\times(ncat-1) corresponding to true values for the (decreasing) cutpoints for the items.

betas

A vector of length nitem corresponding to values for the beta vectors of slopes.

Details

Data from graded logistic models is generated under the following parameterization:

Pr(yi=kiη)={1Ψ(αi,k+βiη)\mboxifki=0Ψ(αi,k+βiη)Ψ(αi,k+1+βiη)\mboxif0<ki<m1Ψ(αi,k+1+βiη)\mboxifki=m1Pr(y_i = k_i| \eta) = \left\{ \begin{array}{ll} 1-\Psi (\alpha_{i,k} + \beta_i \eta) & \mbox{if } k_i = 0\\ \Psi (\alpha_{i,k} + \beta_i \eta) - \Psi (\alpha_{i,k+1} + \beta_i \eta) & \mbox{if } 0 < k_i < m-1\\ \Psi (\alpha_{i,k+1} + \beta_i \eta) & \mbox{if } k_i = m-1 \end{array} \right.

Where the items are yi,i=1,,ny_i, i = 1, \dots, n, and response categories are k=0,,m1k=0, \dots, m-1. η\eta is the latent trait, Ψ\Psi is the logistic distribution function, α\alpha is an intercept (cutpoint) parameter, and β\beta is a slope parameter. When the number of categories for the items is 2, this reduces to the 2PL parameterization:

Pr(yi=1η)=Ψ(α1+βiη)Pr(y_i = 1| \eta) = \Psi (\alpha_1 + \beta_i \eta)

Value

A data matrix in which each row represents a response pattern and the final column represents the frequency of each response pattern.

Author(s)

Carl F. Falk cffalk@gmail.com, Harry Joe

See Also

nrmlepln nrmlerasch nrbcpln

Examples

   n<-500;
   ncat<-3;
   nitem<-5
   alphas=c(0,-.5,  .2,-1,  .4,-.6,  .3,-.2,  .5,-.5)
   betas=c(1,1,1,.5,.5)
   
   set.seed(1234567)
   datfr<-simulpln(n,nitem,ncat,alphas,betas)
   nrmleplnout<-nrmlepln(datfr, ncat=ncat, nitem=nitem)
   nrmleplnout

[Package pln version 0.2-2 Index]